Generate accurate APA citations for free

  • Knowledge Base
  • APA Style 7th edition
  • How to format tables and figures in APA Style

APA Format for Tables and Figures | Annotated Examples

Published on November 5, 2020 by Jack Caulfield . Revised on January 17, 2024.

A table concisely presents information (often numbers) in rows and columns. A figure is any other image or illustration you include in your text—anything from a bar chart to a photograph.

Tables and figures differ in terms of how they convey information, but APA Style presents them in a similar format—preceded by a number and title, and followed by explanatory notes (if necessary).

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Apa table format, apa figure format, numbering and titling tables and figures, formatting table and figure notes, where to place tables and figures, referring to tables and figures in the text, frequently asked questions about apa tables and figures.

Tables will vary in size and structure depending on the data you’re presenting, but APA gives some general guidelines for their design. To correctly format an APA table, follow these rules:

  • Table number in bold above the table.
  • Brief title, in italics and title case, below the table number.
  • No vertical lines.
  • Horizontal lines only where necessary for clarity.
  • Clear, concise labels for column and row headings.
  • Numbers consistently formatted (e.g. with the same number of decimal places).
  • Any relevant notes below the table.

An example of a table formatted according to APA guidelines is shown below.

Example of a table in APA format

The table above uses only four lines: Those at the top and bottom, and those separating the main data from the column heads and the totals.

Create your tables using the tools built into your word processor. In Word, you can use the “ Insert table ” tool.

Prevent plagiarism. Run a free check.

Any images used within your text are called figures. Figures include data visualization graphics—e.g. graphs, diagrams, flowcharts—as well as things like photographs and artworks.

To correctly format an APA figure, follow these rules:

  • Figure number in bold above the figure.
  • Brief title, in italics and title case, under the figure number.
  • If necessary, clear labels and legends integrated into the image.
  • Any relevant notes below the figure.

An example of a figure formatted according to APA guidelines is shown below.

Example of a figure in APA format

Keep the design of figures as simple as possible. Use colors only where necessary, not just to make the image look more appealing.

For text within the image itself, APA recommends using a sans serif font (e.g. Arial) with a size between 8 and 14 points.

For other figures, such as photographs, you won’t need a legend; the figure consists simply of the image itself, reproduced at an appropriate size and resolution.

Each table or figure is preceded by a number and title.

Tables and figures are each numbered separately, in the order they are referred to in your text. For example, the first table you refer to is Table 1; the fourth figure you refer to is Figure 4.

The title should clearly and straightforwardly describe the content of the table or figure. Omit articles to keep it concise.

The table or figure number appears on its own line, in bold, followed by the title on the following line, in italics and title case.

Where a table or figure needs further explanation, notes should be included immediately after it. These are not your analysis of the data presented; save that for the main text.

There are three kinds of notes: general , specific , and probability . Each type of note appears in a new paragraph, but multiple notes of the same kind all appear in one paragraph.

Only include the notes that are needed to understand the table or figure. It may be that it is clear in itself, and has no notes, or only probability notes; be as concise as possible.

General notes

General notes come first. They are preceded by the word “ Note ” in italics, followed by a period. They include any explanations that apply to the table or figure as a whole and a citation if it was adapted from another source, and they end with definitions of any abbreviations used.

Specific notes

Specific notes refer to specific points in the table or figure. Superscript letters (a, b, c …) appear at the relevant points in the table or figure and at the start of each note to indicate what they refer to. They are used when it’s necessary to comment on a specific data point or term.

Probability notes

Probability notes give p -values for the data in the table or figure. They correspond to asterisks (and/or other symbols) in the table or figure.

How should academia deal with AI writing platforms? Free webinar

AI is transforming academia. In collaboration with QuillBot, we’ll explore how appropriate use of AI can help you achieve higher levels of success.

  • The AI revolution for academic success
  • Learn with industry experts and ask your questions
  • Using AI to enhance writing, not replace it

Sign up for this session

February 29th, 10AM CST

example of list of tables in research paper

You have two options for the placement of tables and figures in APA Style:

  • Option 1: Place tables and figures throughout your text, shortly after the parts of the text that refer to them.
  • Option 2: Place them all together at the end of your text (after the reference list) to avoid breaking up the text.

If you place them throughout the text, note that each table or figure should only appear once. If you refer to the same table or figure more than once, don’t reproduce it each time—just place it after the paragraph in which it’s first discussed.

Align the table or figure with the text along the left margin. Leave a line break before and after the table or figure to clearly distinguish it from the main text, and place it on a new page if necessary to avoid splitting it across multiple pages.

Placement of tables in APA format

If you place all your tables and figures at the end, you should have one table or figure on each page. Begin with all your tables, then place all your figures afterwards.

Avoid making redundant statements about your tables and figures in your text. When you write about data from tables and figures, it should be to highlight or analyze a particular data point or trend, not simply to restate what is already clearly shown in the table or figure:

  • As Table 1 shows, there are 115 boys in Grade 4, 130 in Grade 5, and 117 in Grade 6 …
  • Table 1 indicates a notable preponderance of boys in Grade 5. It is important to take this into account because …

Additionally, even if you have embedded your tables and figures in your text, refer to them by their numbers, not by their position relative to the text or by description:

  • The table below shows…
  • Table 1 shows…
  • As can be seen in the image on page 4…
  • As can be seen in Figure 3…
  • The photograph of a bald eagle is an example of…
  • Figure 1 is an example of…

In an APA Style paper , use a table or figure when it’s a clearer way to present important data than describing it in your main text. This is often the case when you need to communicate a large amount of information.

Before including a table or figure in your text, always reflect on whether it’s useful to your readers’ understanding:

  • Could this information be quickly summarized in the text instead?
  • Is it important to your arguments?
  • Does the table or figure require too much explanation to be efficient?

If the data you need to present only contains a few relevant numbers, try summarizing it in the text (potentially including full data in an appendix ). If describing the data makes your text overly long and difficult to read, a table or figure may be the best option.

APA doesn’t require you to include a list of tables or a list of figures . However, it is advisable to do so if your text is long enough to feature a table of contents and it includes a lot of tables and/or figures.

A list of tables and list of figures appear (in that order) after your table of contents , and are presented in a similar way.

If you adapt or reproduce a table or figure from another source, you should include that source in your APA reference list . You should also acknowledge the original source in the note or caption for the table or figure.

Tables and figures you created yourself, based on your own data, are not included in the reference list.

In most styles, the title page is used purely to provide information and doesn’t include any images. Ask your supervisor if you are allowed to include an image on the title page before doing so. If you do decide to include one, make sure to check whether you need permission from the creator of the image.

Include a note directly beneath the image acknowledging where it comes from, beginning with the word “ Note .” (italicized and followed by a period). Include a citation and copyright attribution . Don’t title, number, or label the image as a figure , since it doesn’t appear in your main text.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Caulfield, J. (2024, January 17). APA Format for Tables and Figures | Annotated Examples. Scribbr. Retrieved February 26, 2024, from https://www.scribbr.com/apa-style/tables-and-figures/

Is this article helpful?

Jack Caulfield

Jack Caulfield

Other students also liked, citing tables and figures from other sources in apa style, how to cite an image in apa style, how to write an apa results section, scribbr apa citation checker.

An innovative new tool that checks your APA citations with AI software. Say goodbye to inaccurate citations!

example of list of tables in research paper

  • How it works

List of Figures and Tables in a Dissertation – Examples in Word

Published by Owen Ingram at August 13th, 2021 , Revised On September 20, 2023

“List of tables and figures is a list containing all the tables and figures that you have used in your dissertation paper. Typically, dissertations don’t have many tables and figures unless the research involved is too deep and lengthy.”

Another reason to have an independent list of figures and tables in the dissertation and corresponding page numbers is the research’s nature. For example, research on a topic from physical sciences or engineering could include many figures and tables. Ideally, quantitative research studies tend to contain more tables and/or figures than qualitative ones.

The purpose of presenting the list of figures and tables in the dissertation on a separate page is to help the readers find tables and figures of their interest without looking through the whole dissertation document.

First of all, we need to decide whether we require the figure and table list in the dissertation to begin with.

If your dissertation includes many tables and figures, this list will prove to be helpful for the readers, because the figures will have relative page numbers mentioned with them so they can navigate to the figure or table of their choice with just one click.

A list of table or figures in a dissertation typically follows this simple format:

list of table or figures in a dissertation

Also Read: How to Best Use References in a Dissertation

Referencing List of Figures and Tables in the Dissertation

When mentioning tables and figures in the list, one must be sure that they have been clearly numbered and titled. If a figure has been obtained from an external source, that source should be clearly referenced in the text and the references section.

Regardless of the  referencing style , you are using, it is mandatory to provide a reference along with the title. This will help the readers to track the origin of the figure.

Adding Titles and Numbers to Figures and Tables

Adding titles and page numbers in your list of figures and tables within Microsoft Word is very quick and straightforward. Follow the steps mentioned below to generate a Microsoft Word-supported   list of figures and tables in the dissertation with their captions and corresponding page numbers.

  • Highlight the table or the figure you want to add title and number to, right-click and click Insert Caption .
  • Next, select the Above selected item if you are working with tables. Similarly, choose Below selected items if you want to add the title and page number to a figure.

Also read: How to Write the Abstract for the Dissertation.

Does your Dissertation Have the Following?

  • Great Research/Sources
  • Perfect Language
  • Accurate Sources

If not, we can help. Our panel of experts makes sure to keep the 3 pillars of the Dissertation strong.

Does your Dissertation Have the Following

Generating List of Figures and Tables Automatically

After adding all your captions, MS Word will automatically generate the figures and tables list for you. Remember, the list will only contain those you already marked using the Insert Caption … tool.

To generate a list of tables and figures in MS Word automatically:

Step #1 – Decide where to Insert the List

Place your cursor at the point where you wish to insert the tables and figures list. The most suitable spot is always right below the table of contents in your dissertation paper.

Step #2 – Insert the List of Figures and Tables in the Dissertation

  • In the Word menu bar, click on References .
  • In the dialogue box that appears, click on Insert: Table of figures .
  • In the dialogue box caption label, you can choose between a Figure or a Table , as appropriate. Moreover, you will be able to choose a design that appears most suitable for you. The reference provides all information that is required to find the source, e.g., Vinz, S.

Example of list of tables and figures

table lists in your dissertation example

Other Useful Lists you can add to your Dissertation Paper

Although tables and figures lists can be beneficial, we might need a few more lists, including abbreviations and a glossary in dissertations. We can have a sequence for this which is as follows:

  • Table of contents (ToC)
  • List of tables and figures
  • Abbreviations list

ResearchProspect has helped students with their dissertations and essays for several years, regardless of how urgent and complexes their requirements might be. We have dissertation experts in all academic subjects, so you can be confident of having each of your module requirements met. Learn more about our dissertation writing services and essay writing services .

FAQs About List of Tables and Figures in a Dissertation

Which comes first a list of figures or a list of tables.

Simply put, a list of tables comes first—right after the table of contents page, beginning from a new page—in a dissertation.

Are tables also figures?

No; tables have rows and columns in them, whereas figures in a dissertation can comprise any form of visual element, mostly images, graphs, charts, diagrams, flowcharts, etc. furthermore, tables generally summarise and represent raw data, such as the relationship between two quantitative variables.

Do I need to create a list of tables/figures even if I have only one table or figure in my dissertation?

Typically, yes; dissertation writing guidelines stipulate that we create a list even if we have used only one table and/or figure within our dissertation.

You May Also Like

Not sure how to write dissertation title page? All dissertations must have a dissertation title page where necessary information should be clearly presented

How to Structure a Dissertation or Thesis Need interesting and manageable Finance and Accounting dissertation topics? Here are the trending Media dissertation titles so you can choose one most suitable to your needs.

Finding it difficult to maintain a good relationship with your supervisor? Here are some tips on ‘How to Deal with an Unhelpful Dissertation Supervisor’.

USEFUL LINKS

LEARNING RESOURCES

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

California State University, Long Beach

  • Colleges & Degrees
  • Academic Calendar
  • International Education
  • Graduate Studies
  • Accreditation
  • Tuition and Fees
  • Parking & Maps
  • Careers with CSULB
  • Alumni Home
  • Alumni Volunteering
  • Alumni Giving

Campus Life

  • Centers & Organizations
  • Commencement
  • Student Life
  • Office of the President
  • Office of the Provost
  • Administration & Finance
  • Student Affairs
  • University Relations & Development
  • Information Technology
  • Beach Shops
  • Campus Directory
  • Enrollment Services
  • Financial Aid
  • Schedule of Classes
  • Student Records
  • 49er Foundation
  • Research Foundation

California State University Long Beach

1250 BELLFLOWER BOULEVARD LONG BEACH, CALIFORNIA 90840 562.985.4111

UNIVERSITY LIBRARY PARTICIPATES IN NEW CSU-WIDE LIBRARY SYSTEM

List of Tables, List of Figures

If even one numbered table or figure appears in your manuscript, then a List of Tables and/or a List of Figures must be included in your manuscript following the Table of Contents. If both are used, arrange the List of Tables before the List of Figures.

NOTE: The templates were created using the 2013 version of Microsoft Word. If a template is downloaded in another version of Word or another word processing program, the formatting may be incorrect. Also, if a template is copied and pasted into another document, the settings of that document (margins, page number settings, font style, etc.) may affect the look of the template.

  • List of Tables template (DOC)

This Microsoft Word document can be saved to your computer to use as a template. It was created using Microsoft Office 2013 version of Word. Please email [email protected] if you have problems with the download.

  • List of Figures template (DOC)

California State University, Long Beach

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • Figure & Table Lists | Word Instructions, Template & Examples

Figure & Table Lists | Word Instructions, Template & Examples

Published on 24 May 2022 by Tegan George . Revised on 25 October 2022.

A list of figures and tables compiles all of the figures and tables that you used in your thesis or dissertation, along with their corresponding page numbers. These lists give your reader an overview of how you have used figures and tables in your document.

While these lists are often not required, you may want to include one as a way to stay organised if you are using several figures and tables in your paper. Your educational institution may require one, so be sure to check their guidelines. Ultimately, if you do choose to add one, it should go directly after your table of contents .

You can download our Microsoft Word template below to help you get started.

Download Word doc

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

  • Table of contents

How to create a list of figures and tables in Word

Example of a list of tables and figures, additional lists to consider, frequently asked questions.

The first step to creating your list of figures and tables is to ensure that each of your figures and tables has a caption . This way, Microsoft Word will be able to find each one and compile them in your list automatically.

To do this, follow these steps:

  • Navigate to the References tab, and click ‘Insert Caption’, which you can find in the Captions group.
  • Give your caption a name. In the Label list, you can select the label that best describes your figure or table, or make your own by selecting ‘New Label’.

Add captions to list of tables and figures

Next, you can insert the list of tables and figures directly by clicking ‘Insert Table of Figures’, which can be found to the right of the ‘Insert Caption’ button. Be careful here – the list will only include items that you have marked using the ‘Insert Caption’ tool!

You can choose the formatting and layout within this menu as well, as you can see below.

Add list of tables and figures

There are a few things to remember as you go:

  • Figures and tables always need to be numbered, with clear titles.
  • If a figure or table is taken from or based on another source, be sure to cite your sources .

Prevent plagiarism, run a free check.

list of tables and figures example

In addition to your list of tables and figures, there are a few other lists to consider for your thesis or dissertation. They can be placed in the following order:

  • title=”Abbreviations of a dissertation” Abbreviation list

Copyright information can usually be found wherever the table or figure was published. For example, for a diagram in a journal article , look on the journal’s website or the database where you found the article. Images found on sites like Flickr are listed with clear copyright information.

If you find that permission is required to reproduce the material, be sure to contact the author or publisher and ask for it.

Lists of figures and tables are often not required, and they aren’t particularly common. They specifically aren’t required for APA Style, though you should be careful to follow their other guidelines for figures and tables .

If you have many figures and tables in your thesis or dissertation, include one may help you stay organised. Your educational institution may require them, so be sure to check their guidelines.

APA doesn’t require you to include a list of tables or a list of figures . However, it is advisable to do so if your text is long enough to feature a table of contents and it includes a lot of tables and/or figures .

A list of tables and list of figures appear (in that order) after your table of contents, and are presented in a similar way.

A list of figures and tables compiles all of the figures and tables that you used in your thesis or dissertation and displays them with the page number where they can be found.

Your list of tables and figures should go directly after your table of contents in your thesis or dissertation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

George, T. (2022, October 25). Figure & Table Lists | Word Instructions, Template & Examples. Scribbr. Retrieved 26 February 2024, from https://www.scribbr.co.uk/thesis-dissertation/list-of-figures-tables/

Is this article helpful?

Tegan George

Tegan George

Other students also liked, dissertation table of contents in word | instructions & examples, dissertation title page, list of abbreviations | example, template & best practices.

Logo for Open Oregon Educational Resources

10.5 List of figures and tables

If your document has more than two figures or tables create a separate list of figures. The list of figures has many of the same design considerations as the table of contents. Readers use the list of figures to quickly find the illustrations, diagrams, tables, and charts in your report.

Complications arise when you have both tables and figures. Strictly speaking, figures are illustrations, drawings, photographs, graphs, and charts. Tables are rows and columns of words and numbers; they are not considered figures.

For longer reports that contain dozens of figures and tables each, create separate lists of figures and tables. Put them together on the same page if they fit, as shown in the illustration below. You can combine the two lists under the heading, “List of Figures and Tables,” and identify the items as figure or table as is done in the illustration below.

Chapter Attribution Information

This chapter was derived by Annemarie Hamlin, Chris Rubio, and Michele DeSilva, Central Oregon Community College, from  Online Technical Writing by David McMurrey – CC: BY 4.0

Technical Writing Copyright © 2017 by Allison Gross, Annemarie Hamlin, Billy Merck, Chris Rubio, Jodi Naas, Megan Savage, and Michele DeSilva is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Elsevier QRcode Wechat

  • Manuscript Preparation

How to Use Tables and Figures effectively in Research Papers

  • 3 minute read
  • 35.6K views

Table of Contents

Data is the most important component of any research. It needs to be presented effectively in a paper to ensure that readers understand the key message in the paper. Figures and tables act as concise tools for clear presentation . Tables display information arranged in rows and columns in a grid-like format, while figures convey information visually, and take the form of a graph, diagram, chart, or image. Be it to compare the rise and fall of GDPs among countries over the years or to understand how COVID-19 has impacted incomes all over the world, tables and figures are imperative to convey vital findings accurately.

So, what are some of the best practices to follow when creating meaningful and attractive tables and figures? Here are some tips on how best to present tables and figures in a research paper.

Guidelines for including tables and figures meaningfully in a paper:

  • Self-explanatory display items: Sometimes, readers, reviewers and journal editors directly go to the tables and figures before reading the entire text. So, the tables need to be well organized and self-explanatory.
  • Avoidance of repetition: Tables and figures add clarity to the research. They complement the research text and draw attention to key points. They can be used to highlight the main points of the paper, but values should not be repeated as it defeats the very purpose of these elements.
  • Consistency: There should be consistency in the values and figures in the tables and figures and the main text of the research paper.
  • Informative titles: Titles should be concise and describe the purpose and content of the table. It should draw the reader’s attention towards the key findings of the research. Column heads, axis labels, figure labels, etc., should also be appropriately labelled.
  • Adherence to journal guidelines: It is important to follow the instructions given in the target journal regarding the preparation and presentation of figures and tables, style of numbering, titles, image resolution, file formats, etc.

Now that we know how to go about including tables and figures in the manuscript, let’s take a look at what makes tables and figures stand out and create impact.

How to present data in a table?

For effective and concise presentation of data in a table, make sure to:

  • Combine repetitive tables: If the tables have similar content, they should be organized into one.
  • Divide the data: If there are large amounts of information, the data should be divided into categories for more clarity and better presentation. It is necessary to clearly demarcate the categories into well-structured columns and sub-columns.
  • Keep only relevant data: The tables should not look cluttered. Ensure enough spacing.

Example of table presentation in a research paper

Example of table presentation in a research paper

For comprehensible and engaging presentation of figures:

  • Ensure clarity: All the parts of the figure should be clear. Ensure the use of a standard font, legible labels, and sharp images.
  • Use appropriate legends: They make figures effective and draw attention towards the key message.
  • Make it precise: There should be correct use of scale bars in images and maps, appropriate units wherever required, and adequate labels and legends.

It is important to get tables and figures correct and precise for your research paper to convey your findings accurately and clearly. If you are confused about how to suitably present your data through tables and figures, do not worry. Elsevier Author Services are well-equipped to guide you through every step to ensure that your manuscript is of top-notch quality.

What is a Problem Statement

  • Research Process

What is a Problem Statement? [with examples]

what-background-study-how-to-write

What is the Background of a Study and How Should it be Written?

You may also like.

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

example of list of tables in research paper

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

There are some recognizable elements and patterns often used for framing engaging sentences in English. Find here the sentence patterns in Academic Writing

Changing Lines: Sentence Patterns in Academic Writing

example of list of tables in research paper

Path to An Impactful Paper: Common Manuscript Writing Patterns and Structure

Input your search keywords and press Enter.

Writing Center Home Page

OASIS: Writing Center

Tables & figures: tables.

In APA style, a table is a representation of information that uses rows and columns.

Keep the following in mind when including a table in your paper:

  • Place the table number above the table, in bold text and flush with the left margin. Place the title of the table (in title case and italics), double-spaced, under the table number, flush left.
  • Double-space before and after the table. Information regarding abbreviations or symbols used in a table, copyright information, and probability must be located in a Note below the table. See APA 7, Section 7.4 for formatting information.
  • If you are using data from a source in your table, be sure to cite the source after the table.

For more on tables, see APA 7, Sections 7.4-7.21.

Examples of Tables

In this example, the author created the table using statistics from a government website.

From “Attention-Deficit/Hyperactivity Disorder (ADHD): Data & Statistics,” by Centers for Disease Control and Prevention, 2018 (https://www.cdc.gov/ncbddd/adhd/data.html).

In this example, the author created the table from original data.

More Guidelines

  • Use plain type for column headings and row labels. Use sentence case for column and row headings and text, maintaining capitalization of proper nouns and names of scales, for example. Bold type may be used for emphasis of some table data (see APA 7, Table 7.14).
  • Limit the use of rules, or lines, to those necessary for clarity. Use horizontal lines only.
  • Table text may be single- or double-spaced; consider readability in your line-spacing decision.  
  • The font size used in tables and figures may be smaller than that used in the text; however, to ensure a professional appearance and legibility, it should be no smaller than 8 point and no larger than 12 point.
  • Creating, Labeling, and Citing APA-Compliant Tables Step-by-step instructions for creating APA-compliant tables in Microsoft Word.

Didn't find what you need? Search our website or email us .

Read our website accessibility and accommodation statement .

  • Previous Page: Overview
  • Next Page: Figures
  • Office of Student Disability Services

Walden Resources

Departments.

  • Academic Residencies
  • Academic Skills
  • Career Planning and Development
  • Customer Care Team
  • Field Experience
  • Military Services
  • Student Success Advising
  • Writing Skills

Centers and Offices

  • Center for Social Change
  • Office of Academic Support and Instructional Services
  • Office of Degree Acceleration
  • Office of Research and Doctoral Services
  • Office of Student Affairs

Student Resources

  • Doctoral Writing Assessment
  • Form & Style Review
  • Quick Answers
  • ScholarWorks
  • SKIL Courses and Workshops
  • Walden Bookstore
  • Walden Catalog & Student Handbook
  • Student Safety/Title IX
  • Legal & Consumer Information
  • Website Terms and Conditions
  • Cookie Policy
  • Accessibility
  • Accreditation
  • State Authorization
  • Net Price Calculator
  • Contact Walden

Walden University is a member of Adtalem Global Education, Inc. www.adtalem.com Walden University is certified to operate by SCHEV © 2024 Walden University LLC. All rights reserved.

example of list of tables in research paper

The Plagiarism Checker Online For Your Academic Work

Start Plagiarism Check

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Plagiarism Check within 10min

Printing & Binding with 3D Live Preview

List Of Figures And Tables For Your Dissertation

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

List-of-Figures-and-Tables-Definition

The list of figures and tables in a research paper , thesis, or dissertation provides a structured overview of graphic elements included in the paper. This list guides readers to find specific graphs, images, tables, or charts effortlessly. The process of compiling this list needs more than just listing the captions; it also requires proper formatting and sequencing in line with academic guidelines. This article explores creating a well-structured list of figures and tables with examples.

Inhaltsverzeichnis

  • 1 List of Figures and Tables – In a Nutshell
  • 2 Definition: List of figures and tables
  • 3 Creating the list of figures and tables in Word
  • 4 Example list of figures and tables
  • 5 List of figures and tables: Additional lists

List of Figures and Tables – In a Nutshell

The American Psychological Association publishes the APA style guide, which aims to:

  • Facilitate concise academic and scholarly communication worldwide.
  • Act as a reference for the various components and conventions of scientific and technical writing.
  • Improve the readability of documents.

Definition: List of figures and tables

Tables show numerical values or text arranged in rows and columns. In contrast, figures typically consist of graphs, illustrations, or drawings.

The APA style guide defines figures as graphical displays other than tables, including photographs, graphics, charts, and non-textual information.

Suppose a dissertation contains one or more tables or figures. In that case, the APA guide specifies including a list of figures and tables as appropriate.

Every list of figures and tables includes a tabulated, numerical enumeration of the titles of each relevant item. This uniform and consistent approach enables dissertation readers – including examiners – to quickly scan and locate the sources, findings, and key points in long documents.

By following APA recommendations to make a list of figures and tables, college and university students can present their dissertations correctly.

List of Tables

Table 1             Title of Table One ……………………………………………………………………………..2 Table 2             Title of Table Two .…………………………………………………………………………….3 Table 3             Title of Table ‘Three ………………………………………………………………………….3

List of Figures

Figure 1            Title of Figure One …………………………………………………………………………..4 Figure 2            Title of Figure Two …………………………………………………………………………..5 Figure 3            Title of Figure Three ………………………………………………………………………..5

This article will delve into how to include a list of figures and tables in APA style in your dissertation.

Creating the list of figures and tables in Word

Creating a list of figures and tables is straightforward in most word processing software, such as Microsoft Word.

  • Firstly, we must add captions to each figure or table. The figure number goes in bold above the figure (e.g. Figure 1). Then, the figure title appears as one double-spaced line below the figure number in italics in title case, i.e. with the first letter of major words capitalized.
  • Next, use the command on the “References” menu to complete the detailed settings you require. On confirming, the software will create the list sorted by page number and include it in your document.

Note: It is essential to eschew plagiarism if you are creating a list of figures and tables based on copying from another document.

Also, remember that the source document settings and format may affect how the table looks in your new paper: font style, page number conventions, margin widths, etc.

  • Firstly, we must add captions to each figure or table. The figure number goes in bold above the figure (e.g., Figure 1). Then, the figure title appears as one double-spaced line below the figure number in italics in title case, i.e., with the first letter of major words capitalized.

Further information on formatting standards for a list of figures and tables are on pages 225 to 250 of the APA Publication Manual 7th Edition (2020).

Example list of figures and tables

List-of-Figures-and-Tables-Example

List of figures and tables: Additional lists

Other lists you might consider including in a dissertation are:

  • A list of abbreviations
  • A table of contents

After the title, approval signature, and copyright page(s) as applicable, we recommend you arrange the pages of a dissertation in the following order:

  • Table of Contents

Occasionally, research results or lengthy analyses may extend to hundreds of rows. Instead of including all the detail, a clickable link or URL (universal resource locator) to an online version may be preferable.

We recommend opting for a data repository or an arXiv location, as privately hosted websites may change or disappear.

Best practice guidelines advocate the long-term availability of datasets for at least five years after publication. 2 Resources such as nature.com publish details of storage options by scientific field.

How do you list tables in a dissertation?

Your list of figures and tables comes after the table of contents. If both lists are present, the list of titles appears before the list of figures.

What are figure keys?

Figure legends (also known as keys) explain uncommon symbols used in the figure image. They should appear within the borders of the figure.

What are figure notes?

Figure notes explain, describe, clarify, or supplement the information in the image. Only some figures include notes, as and when necessary.

Where do I position notes for figures or tables?

According to the APA style guide, notes appear below the figure or table. Use double line spacing and left justification.

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

Enago Academy

Effective Use of Tables and Figures in Research Papers

' src=

Research papers are often based on copious amounts of data that can be summarized and easily read through tables and graphs. When writing a research paper , it is important for data to be presented to the reader in a visually appealing way. The data in figures and tables, however, should not be a repetition of the data found in the text. There are many ways of presenting data in tables and figures, governed by a few simple rules. An APA research paper and MLA research paper both require tables and figures, but the rules around them are different. When writing a research paper, the importance of tables and figures cannot be underestimated. How do you know if you need a table or figure? The rule of thumb is that if you cannot present your data in one or two sentences, then you need a table .

Using Tables

Tables are easily created using programs such as Excel. Tables and figures in scientific papers are wonderful ways of presenting data. Effective data presentation in research papers requires understanding your reader and the elements that comprise a table. Tables have several elements, including the legend, column titles, and body. As with academic writing, it is also just as important to structure tables so that readers can easily understand them. Tables that are disorganized or otherwise confusing will make the reader lose interest in your work.

  • Title: Tables should have a clear, descriptive title, which functions as the “topic sentence” of the table. The titles can be lengthy or short, depending on the discipline.
  • Column Titles: The goal of these title headings is to simplify the table. The reader’s attention moves from the title to the column title sequentially. A good set of column titles will allow the reader to quickly grasp what the table is about.
  • Table Body: This is the main area of the table where numerical or textual data is located. Construct your table so that elements read from up to down, and not across.
Related: Done organizing your research data effectively in tables? Check out this post on tips for citing tables in your manuscript now!

The placement of figures and tables should be at the center of the page. It should be properly referenced and ordered in the number that it appears in the text. In addition, tables should be set apart from the text. Text wrapping should not be used. Sometimes, tables and figures are presented after the references in selected journals.

Using Figures

Figures can take many forms, such as bar graphs, frequency histograms, scatterplots, drawings, maps, etc. When using figures in a research paper, always think of your reader. What is the easiest figure for your reader to understand? How can you present the data in the simplest and most effective way? For instance, a photograph may be the best choice if you want your reader to understand spatial relationships.

  • Figure Captions: Figures should be numbered and have descriptive titles or captions. The captions should be succinct enough to understand at the first glance. Captions are placed under the figure and are left justified.
  • Image: Choose an image that is simple and easily understandable. Consider the size, resolution, and the image’s overall visual attractiveness.
  • Additional Information: Illustrations in manuscripts are numbered separately from tables. Include any information that the reader needs to understand your figure, such as legends.

Common Errors in Research Papers

Effective data presentation in research papers requires understanding the common errors that make data presentation ineffective. These common mistakes include using the wrong type of figure for the data. For instance, using a scatterplot instead of a bar graph for showing levels of hydration is a mistake. Another common mistake is that some authors tend to italicize the table number. Remember, only the table title should be italicized .  Another common mistake is failing to attribute the table. If the table/figure is from another source, simply put “ Note. Adapted from…” underneath the table. This should help avoid any issues with plagiarism.

Using tables and figures in research papers is essential for the paper’s readability. The reader is given a chance to understand data through visual content. When writing a research paper, these elements should be considered as part of good research writing. APA research papers, MLA research papers, and other manuscripts require visual content if the data is too complex or voluminous. The importance of tables and graphs is underscored by the main purpose of writing, and that is to be understood.

Frequently Asked Questions

"Consider the following points when creating figures for research papers: Determine purpose: Clarify the message or information to be conveyed. Choose figure type: Select the appropriate type for data representation. Prepare and organize data: Collect and arrange accurate and relevant data. Select software: Use suitable software for figure creation and editing. Design figure: Focus on clarity, labeling, and visual elements. Create the figure: Plot data or generate the figure using the chosen software. Label and annotate: Clearly identify and explain all elements in the figure. Review and revise: Verify accuracy, coherence, and alignment with the paper. Format and export: Adjust format to meet publication guidelines and export as suitable file."

"To create tables for a research paper, follow these steps: 1) Determine the purpose and information to be conveyed. 2) Plan the layout, including rows, columns, and headings. 3) Use spreadsheet software like Excel to design and format the table. 4) Input accurate data into cells, aligning it logically. 5) Include column and row headers for context. 6) Format the table for readability using consistent styles. 7) Add a descriptive title and caption to summarize and provide context. 8) Number and reference the table in the paper. 9) Review and revise for accuracy and clarity before finalizing."

"Including figures in a research paper enhances clarity and visual appeal. Follow these steps: Determine the need for figures based on data trends or to explain complex processes. Choose the right type of figure, such as graphs, charts, or images, to convey your message effectively. Create or obtain the figure, properly citing the source if needed. Number and caption each figure, providing concise and informative descriptions. Place figures logically in the paper and reference them in the text. Format and label figures clearly for better understanding. Provide detailed figure captions to aid comprehension. Cite the source for non-original figures or images. Review and revise figures for accuracy and consistency."

"Research papers use various types of tables to present data: Descriptive tables: Summarize main data characteristics, often presenting demographic information. Frequency tables: Display distribution of categorical variables, showing counts or percentages in different categories. Cross-tabulation tables: Explore relationships between categorical variables by presenting joint frequencies or percentages. Summary statistics tables: Present key statistics (mean, standard deviation, etc.) for numerical variables. Comparative tables: Compare different groups or conditions, displaying key statistics side by side. Correlation or regression tables: Display results of statistical analyses, such as coefficients and p-values. Longitudinal or time-series tables: Show data collected over multiple time points with columns for periods and rows for variables/subjects. Data matrix tables: Present raw data or matrices, common in experimental psychology or biology. Label tables clearly, include titles, and use footnotes or captions for explanations."

' src=

Enago is a very useful site. It covers nearly all topics of research writing and publishing in a simple, clear, attractive way. Though I’m a journal editor having much knowledge and training in these issues, I always find something new in this site. Thank you

“Thank You, your contents really help me :)”

Rate this article Cancel Reply

Your email address will not be published.

example of list of tables in research paper

Enago Academy's Most Popular

explanatory variables

  • Reporting Research

Explanatory & Response Variable in Statistics — A quick guide for early career researchers!

Often researchers have a difficult time choosing the parameters and variables (like explanatory and response…

data visualization techniques

  • Manuscript Preparation
  • Publishing Research

How to Use Creative Data Visualization Techniques for Easy Comprehension of Qualitative Research

“A picture is worth a thousand words!”—an adage used so often stands true even whilst…

statistics in research

  • Figures & Tables

Effective Use of Statistics in Research – Methods and Tools for Data Analysis

Remember that impending feeling you get when you are asked to analyze your data! Now…

  • Old Webinars
  • Webinar Mobile App

SCI中稿技巧: 提升研究数据的说服力

如何寻找原创研究课题 快速定位目标文献的有效搜索策略 如何根据期刊指南准备手稿的对应部分 论文手稿语言润色实用技巧分享,快速提高论文质量

Distill

Distill: A Journal With Interactive Images for Machine Learning Research

Research is a wide and extensive field of study. This field has welcomed a plethora…

Explanatory & Response Variable in Statistics — A quick guide for early career…

How to Create and Use Gantt Charts

example of list of tables in research paper

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

example of list of tables in research paper

When should AI tools be used in university labs?

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Turk J Urol
  • v.39(Suppl 1); 2013 Sep

How to clearly articulate results and construct tables and figures in a scientific paper?

The writing of the results section of a scientific paper is very important for the readers for clearly understanding of the study. This review summarizes the rules for writing the results section of a scientific paper and describes the use of tables and figures.

Introduction

Medical articles consist of review articles, case reports, and letters to the editor which are prepared with the intention of publishing in journals related to the medical discipline of the author. For an academician to be able to progress in carreer, and make his/her activities known in the academic environment, require preparation of the protocol of his/her academic research article, and acquiring sufficient information, and experience related to the composition of this article. In this review article, the information related to the writing of the ‘Results’ section, and use of tables, and figures will be presented to the attention of the readers.

Writing the ‘Results’ section

The ‘Results’ section is perhaps the most important part of a research article. In fact the authors will share the results of their research/study with their readers. Renown British biologist Thomas Henry Huxley (1825–1895) indicated his feelings as “The great tragedy of science: the slaying of a beautiful hypothesis by an ugly fact.” which emphasizes the importance of accurately, and impressively written results.

In essence results provide a response for the question” What is found in the research performed?”. Therefore, it is the most vital part of the article. As a priority, while drafting the ‘Results’ section of a manuscript one should not firstly write down methods in the ‘Material and Method’ section. The first sentence should give information about the number of patients who met the inclusion criteria, and thus enrolled in the study. [ 1 ] Besides information about the number of patients excluded from the study, and the reasons for exclusion is very important in that they will enlighten the readers, and reviewers who critically evaluate the manuscript, and also reflect the seriousness of the study. On the other hand, the results obtained should be recorded in chronological order, and without any comments. [ 2 ] In this section use of simple present tense is more appropriate. The findings should be expressed in brief, lucid, and explicable words. The writing style should not be boring for the reader. During writing process of a research article, a generally ill-conceived point is that positive, and significant findings are more important, attractive, and valuable, while negative, and insignificant findings are worthless, and less attractive. A scientific research is not performed to confirm a hypothesis, rather to test it. Not only positive, and significant results are worth writing, on the other hand negative or statistically insignificant result which support fallacy of a widely accepted opinion might be valuable. Therefore, all findings obtained during research should be inclıuded in the ‘Results’ section. [ 1 ]

While writing the ‘Results’ section, the sequence of results, tabulated data, and information which will be illustrated as figures should be definitively indicated. In indicating insignificant changes, do not use expressions as “decreased” or “increased”, these words should be reserved for significant changes. If results related to more than one parameter would be reported, it is appropriate to write the results under the subheading of its related parameter so as to facilitate reading, and comprehension of information. [ 2 ] Only data, and information concerning the study in question should be included in the ‘Results’ section. Results not mentioned in this section should not be included in the ‘Discussion’ and ‘Summary’ sections. Since the results obtained by the authors are cited in the ‘Results’ section, any reference should not be indicated in this section. [ 3 ]

In the ‘Results’ section, numerical expressions should be written in technically appropriate terms. The number of digits (1, 2 or 3 digits) to be written after a comma (in Turkish) or a point (in especially American English) should be determined The number of digits written after the punctuation marks should not be changed all throughout the text. Data should be expressed as mean/median ± standard deviation. Data as age, and scale scores should be indicated together with ranges of values. Absolute numerical value corresponding to a percentage must be also indicated. P values calculated in statistical analysis should be expressed in their absolute values. While writing p values of statistically significant data, instead of p<0.05 the actual level of significance should be recorded. If p value is smaller than 0.001, then it can be written as p <0.01. [ 2 ] While writing the ‘Results’ section, significant data which should be recalled by the readers must be indicated in the main text. It will be appropriate to indicate other demographic numerical details in tables or figures.

As an example elucidating the abovementioned topics a research paper written by the authors of this review article, and published in the Turkish Journal of Urology in the year 2007 (Türk Üroloji Dergisi 2007;33:18–23) is presented below:

“A total of 9 (56.2%) female, and 7 (43.8%) male patients with were included in this study. Mean age of all the patients was 44.3±13.8 (17–65) years, and mean dimensions of the adrenal mass was 4.5±3.4 (1–14) cm. Mean ages of the male, and female patients were 44.1 (30–65), and 42.4 (17–64) years, while mean diameters of adrenal masses were 3.2 (1–5), and 4.5 (1–14) cm (p age =0.963, p mass size =0.206). Surgical procedures were realized using transperitoneal approach through Chevron incision in 1 (6.2%), and retroperitoneal approach using flank incision with removal of the 11. rib in 15 (93.7%) patients. Right (n=6; 37.5%), and left (n=2; 12.5%) adrenalectomies were performed. Two (12.5%) patients underwent bilateral adrenalectomy in the same session because of clinical Cushing’s syndrome persisted despite transsphenoidal hipophysectomy. Mean operative time, and length of the hospital stay were 135 (65–190) min, and 3 (2–6) days, respectively. While resecting 11. rib during retroperitoneal adrenalectomy performed in 1 patient, pleura was perforated for nearly 1.5 cm. The perforated region was drained, and closed intraoperatively with 4/0 polyglyctan sutures. The patient did not develop postoperative pneumothorax. In none of the patients postoperative complications as pneumothorax, bleeding, prolonged drainage were seen. Results of histopathological analysis of the specimens retrieved at the end of the operation were summarized in Table 1 .” Table 1. Histopathological examination results of the patients Histopathological diagnosis Men n (%) Women n (%) Total n (%) Adrenal cortical adenoma 5 (31.3) 6 (37.6) 11 (68.8) Pheochromocytoma 1 (6.2) 1 (6.2) 2 (12.6) Ganglioneuroma 1 (6.2) - 1 (6.2) Myelolipoma - 1 (6.2) 1 (6.2) Adrenal carcinoma - 1 (6.2) 1 (6.2) Total 7 (43.7) 9 (56.2) 16 (100) Open in a separate window

Use of tables, and figures

To prevent the audience from getting bored while reading a scientific article, some of the data should be expressed in a visual format in graphics, and figures rather than crowded numerical values in the text. Peer-reviewers frequently look at tables, and figures. High quality tables, and figures increase the chance of acceptance of the manuscript for publication.

Number of tables in the manuscript should not exceed the number recommended by the editorial board of the journal. Data in the main text, and tables should not be repeated many times. Tables should be comprehensible, and a reader should be able to express an opinion about the results just at looking at the tables without reading the main text. Data included in tables should comply with those mentioned in the main text, and percentages in rows, and columns should be summed up accurately. Unit of each variable should be absolutely defined. Sampling size of each group should be absolutely indicated. Values should be expressed as values±standard error, range or 95% confidence interval. Tables should include precise p values, and level of significance as assessed with statistical analysis should be indicated in footnotes. [ 2 ] Use of abbreviations in tables should be avoided, if abbreviations are required they should be defined explicitly in the footnotes or legends of the tables. As a general rule, rows should be arranged as double-spaced Besides do not use pattern coloring for cells of rows, and columns. Values included in tables should be correctly approximated. [ 1 , 2 ]

As an example elucidating the abovementioned topics a research paper written by the authors of this review article, and published in the Turkish Journal of Urology in the year 2007 (Türk Üroloji Dergisi 2007;33:18–23).is shown in Table 1 .

Most of the readers priorly prefer to look at figures, and graphs rather than reading lots of pages. Selection of appropriate types of graphs for demonstration of data is a critical decision which requires artist’s meticulousness. As is the case with tables, graphs, and figures should also disploay information not provided in the text. Bar, line, and pie graphs, scatter plots, and histograms are some examples of graphs. In graphs, independent variables should be represented on the horizontal, and dependent variables on the vertical axis. Number of subjects in every subgroup should be indicated The labels on each axis should be easily understandable. [ 2 ] The label of the Y axis should be written vertically from bottom to top. The fundamental point in writing explanatory notes for graphs, and figures is to help the readers understand the contents of them without referring to the main text. Meanings of abbreviations, and acronyms used in the graphs, and figures should be provided in explanatory notes. In the explanatory notes striking data should be emphasized. Statistical tests used, levels of significance, sampling size, stains used for analyses, and magnification rate should be written in order to facilitate comprehension of the study procedures. [ 1 , 2 ]

Flow diagram can be utilized in the ‘Results’ section. This diagram facilitates comprehension of the results obtained at certain steps of monitorization during the research process. Flow diagram can be used either in the ‘Results’ or ‘Material and Method’ section. [ 2 , 3 ]

Histopathological analyses, surgical technique or radiological images which are considered to be more useful for the comprehension of the text by the readers can be visually displayed. Important findings should be marked on photos, and their definitions should be provided clearly in the explanatory legends. [ 1 ]

As an example elucidating the abovementioned issues, graphics, and flow diagram in the ‘Results’ section of a research paper written by the authors of this review article, and published in the World Journal of Urology in the year 2010 (World J Urol 2010;28:17–22.) are shown in Figures 1 , and ​ and2 2 .

An external file that holds a picture, illustration, etc.
Object name is TJU-39-Supp-16-g01.jpg

a The mean SHIM scores of the groups before and after treatment. SHIM sexual health inventory for male. b The mean IPSS scores of the groups before and after treatment. IPSS international prostate symptom score

An external file that holds a picture, illustration, etc.
Object name is TJU-39-Supp-16-g02.jpg

Flowchart showing patients’ progress during the study. SHIM sexual health inventory for male, IIEF international index of erectile function, IPSS international prostate symptom score, QoL quality of life, Q max maximum urinary flow rate. PRV post voiding residual urine volume

In conclusion, in line with the motto of the famous German physicist Albert Einstein (1879–1955). ‘If you are out to describe the truth, leave elegance to the tailor .’ results obtained in a scientific research article should be expressed accurately, and with a masterstroke of a tailor in compliance with certain rules which will ensure acceptability of the scientific manuscript by the editorial board of the journal, and also facilitate its intelligibility by the readers.

  • Search This Site All UCSD Sites Faculty/Staff Search Term
  • Contact & Directions
  • Climate Statement
  • Cognitive Behavioral Neuroscience
  • Cognitive Psychology
  • Developmental Psychology
  • Social Psychology
  • Adjunct Faculty
  • Non-Senate Instructors
  • Researchers
  • Psychology Grads
  • Affiliated Grads
  • New and Prospective Students
  • Honors Program
  • Experiential Learning
  • Programs & Events
  • Psi Chi / Psychology Club
  • Prospective PhD Students
  • Current PhD Students
  • Area Brown Bags
  • Colloquium Series
  • Anderson Distinguished Lecture Series
  • Speaker Videos
  • Undergraduate Program
  • Academic and Writing Resources

Writing Research Papers

  • Research Paper Structure

Whether you are writing a B.S. Degree Research Paper or completing a research report for a Psychology course, it is highly likely that you will need to organize your research paper in accordance with American Psychological Association (APA) guidelines.  Here we discuss the structure of research papers according to APA style.

Major Sections of a Research Paper in APA Style

A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1  Many will also contain Figures and Tables and some will have an Appendix or Appendices.  These sections are detailed as follows (for a more in-depth guide, please refer to " How to Write a Research Paper in APA Style ”, a comprehensive guide developed by Prof. Emma Geller). 2

What is this paper called and who wrote it? – the first page of the paper; this includes the name of the paper, a “running head”, authors, and institutional affiliation of the authors.  The institutional affiliation is usually listed in an Author Note that is placed towards the bottom of the title page.  In some cases, the Author Note also contains an acknowledgment of any funding support and of any individuals that assisted with the research project.

One-paragraph summary of the entire study – typically no more than 250 words in length (and in many cases it is well shorter than that), the Abstract provides an overview of the study.

Introduction

What is the topic and why is it worth studying? – the first major section of text in the paper, the Introduction commonly describes the topic under investigation, summarizes or discusses relevant prior research (for related details, please see the Writing Literature Reviews section of this website), identifies unresolved issues that the current research will address, and provides an overview of the research that is to be described in greater detail in the sections to follow.

What did you do? – a section which details how the research was performed.  It typically features a description of the participants/subjects that were involved, the study design, the materials that were used, and the study procedure.  If there were multiple experiments, then each experiment may require a separate Methods section.  A rule of thumb is that the Methods section should be sufficiently detailed for another researcher to duplicate your research.

What did you find? – a section which describes the data that was collected and the results of any statistical tests that were performed.  It may also be prefaced by a description of the analysis procedure that was used. If there were multiple experiments, then each experiment may require a separate Results section.

What is the significance of your results? – the final major section of text in the paper.  The Discussion commonly features a summary of the results that were obtained in the study, describes how those results address the topic under investigation and/or the issues that the research was designed to address, and may expand upon the implications of those findings.  Limitations and directions for future research are also commonly addressed.

List of articles and any books cited – an alphabetized list of the sources that are cited in the paper (by last name of the first author of each source).  Each reference should follow specific APA guidelines regarding author names, dates, article titles, journal titles, journal volume numbers, page numbers, book publishers, publisher locations, websites, and so on (for more information, please see the Citing References in APA Style page of this website).

Tables and Figures

Graphs and data (optional in some cases) – depending on the type of research being performed, there may be Tables and/or Figures (however, in some cases, there may be neither).  In APA style, each Table and each Figure is placed on a separate page and all Tables and Figures are included after the References.   Tables are included first, followed by Figures.   However, for some journals and undergraduate research papers (such as the B.S. Research Paper or Honors Thesis), Tables and Figures may be embedded in the text (depending on the instructor’s or editor’s policies; for more details, see "Deviations from APA Style" below).

Supplementary information (optional) – in some cases, additional information that is not critical to understanding the research paper, such as a list of experiment stimuli, details of a secondary analysis, or programming code, is provided.  This is often placed in an Appendix.

Variations of Research Papers in APA Style

Although the major sections described above are common to most research papers written in APA style, there are variations on that pattern.  These variations include: 

  • Literature reviews – when a paper is reviewing prior published research and not presenting new empirical research itself (such as in a review article, and particularly a qualitative review), then the authors may forgo any Methods and Results sections. Instead, there is a different structure such as an Introduction section followed by sections for each of the different aspects of the body of research being reviewed, and then perhaps a Discussion section. 
  • Multi-experiment papers – when there are multiple experiments, it is common to follow the Introduction with an Experiment 1 section, itself containing Methods, Results, and Discussion subsections. Then there is an Experiment 2 section with a similar structure, an Experiment 3 section with a similar structure, and so on until all experiments are covered.  Towards the end of the paper there is a General Discussion section followed by References.  Additionally, in multi-experiment papers, it is common for the Results and Discussion subsections for individual experiments to be combined into single “Results and Discussion” sections.

Departures from APA Style

In some cases, official APA style might not be followed (however, be sure to check with your editor, instructor, or other sources before deviating from standards of the Publication Manual of the American Psychological Association).  Such deviations may include:

  • Placement of Tables and Figures  – in some cases, to make reading through the paper easier, Tables and/or Figures are embedded in the text (for example, having a bar graph placed in the relevant Results section). The embedding of Tables and/or Figures in the text is one of the most common deviations from APA style (and is commonly allowed in B.S. Degree Research Papers and Honors Theses; however you should check with your instructor, supervisor, or editor first). 
  • Incomplete research – sometimes a B.S. Degree Research Paper in this department is written about research that is currently being planned or is in progress. In those circumstances, sometimes only an Introduction and Methods section, followed by References, is included (that is, in cases where the research itself has not formally begun).  In other cases, preliminary results are presented and noted as such in the Results section (such as in cases where the study is underway but not complete), and the Discussion section includes caveats about the in-progress nature of the research.  Again, you should check with your instructor, supervisor, or editor first.
  • Class assignments – in some classes in this department, an assignment must be written in APA style but is not exactly a traditional research paper (for instance, a student asked to write about an article that they read, and to write that report in APA style). In that case, the structure of the paper might approximate the typical sections of a research paper in APA style, but not entirely.  You should check with your instructor for further guidelines.

Workshops and Downloadable Resources

  • For in-person discussion of the process of writing research papers, please consider attending this department’s “Writing Research Papers” workshop (for dates and times, please check the undergraduate workshops calendar).

Downloadable Resources

  • How to Write APA Style Research Papers (a comprehensive guide) [ PDF ]
  • Tips for Writing APA Style Research Papers (a brief summary) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – empirical research) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – literature review) [ PDF ]

Further Resources

How-To Videos     

  • Writing Research Paper Videos

APA Journal Article Reporting Guidelines

  • Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 3.
  • Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 26.  

External Resources

  • Formatting APA Style Papers in Microsoft Word
  • How to Write an APA Style Research Paper from Hamilton University
  • WikiHow Guide to Writing APA Research Papers
  • Sample APA Formatted Paper with Comments
  • Sample APA Formatted Paper
  • Tips for Writing a Paper in APA Style

1 VandenBos, G. R. (Ed). (2010). Publication manual of the American Psychological Association (6th ed.) (pp. 41-60).  Washington, DC: American Psychological Association.

2 geller, e. (2018).  how to write an apa-style research report . [instructional materials]. , prepared by s. c. pan for ucsd psychology.

Back to top  

  • Formatting Research Papers
  • Using Databases and Finding References
  • What Types of References Are Appropriate?
  • Evaluating References and Taking Notes
  • Citing References
  • Writing a Literature Review
  • Writing Process and Revising
  • Improving Scientific Writing
  • Academic Integrity and Avoiding Plagiarism
  • Writing Research Papers Videos
  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Use Tables & Graphs in a Research Paper

example of list of tables in research paper

It might not seem very relevant to the story and outcome of your study, but how you visually present your experimental or statistical results can play an important role during the review and publication process of your article. A presentation that is in line with the overall logical flow of your story helps you guide the reader effectively from your introduction to your conclusion. 

If your results (and the way you organize and present them) don’t follow the story you outlined in the beginning, then you might confuse the reader and they might end up doubting the validity of your research, which can increase the chance of your manuscript being rejected at an early stage. This article illustrates the options you have when organizing and writing your results and will help you make the best choice for presenting your study data in a research paper.

Why does data visualization matter?

Your data and the results of your analysis are the core of your study. Of course, you need to put your findings and what you think your findings mean into words in the text of your article. But you also need to present the same information visually, in the results section of your manuscript, so that the reader can follow and verify that they agree with your observations and conclusions. 

The way you visualize your data can either help the reader to comprehend quickly and identify the patterns you describe and the predictions you make, or it can leave them wondering what you are trying to say or whether your claims are supported by evidence. Different types of data therefore need to be presented in different ways, and whatever way you choose needs to be in line with your story. 

Another thing to keep in mind is that many journals have specific rules or limitations (e.g., how many tables and graphs you are allowed to include, what kind of data needs to go on what kind of graph) and specific instructions on how to generate and format data tables and graphs (e.g., maximum number of subpanels, length and detail level of tables). In the following, we will go into the main points that you need to consider when organizing your data and writing your result section .

Table of Contents:

Types of data , when to use data tables .

  • When to Use Data Graphs 

Common Types of Graphs in Research Papers 

Journal guidelines: what to consider before submission.

Depending on the aim of your research and the methods and procedures you use, your data can be quantitative or qualitative. Quantitative data, whether objective (e.g., size measurements) or subjective (e.g., rating one’s own happiness on a scale), is what is usually collected in experimental research. Quantitative data are expressed in numbers and analyzed with the most common statistical methods. Qualitative data, on the other hand, can consist of case studies or historical documents, or it can be collected through surveys and interviews. Qualitative data are expressed in words and needs to be categorized and interpreted to yield meaningful outcomes. 

Quantitative data example: Height differences between two groups of participants Qualitative data example: Subjective feedback on the food quality in the work cafeteria

Depending on what kind of data you have collected and what story you want to tell with it, you have to find the best way of organizing and visualizing your results.

When you want to show the reader in detail how your independent and dependent variables interact, then a table (with data arranged in columns and rows) is your best choice. In a table, readers can look up exact values, compare those values between pairs or groups of related measurements (e.g., growth rates or outcomes of a medical procedure over several years), look at ranges and intervals, and select specific factors to search for patterns. 

Tables are not restrained to a specific type of data or measurement. Since tables really need to be read, they activate the verbal system. This requires focus and some time (depending on how much data you are presenting), but it gives the reader the freedom to explore the data according to their own interest. Depending on your audience, this might be exactly what your readers want. If you explain and discuss all the variables that your table lists in detail in your manuscript text, then you definitely need to give the reader the chance to look at the details for themselves and follow your arguments. If your analysis only consists of simple t-tests to assess differences between two groups, you can report these results in the text (in this case: mean, standard deviation, t-statistic, and p-value), and do not necessarily need to include a table that simply states the same numbers again. If you did extensive analyses but focus on only part of that data (and clearly explain why, so that the reader does not think you forgot to talk about the rest), then a graph that illustrates and emphasizes the specific result or relationship that you consider the main point of your story might be a better choice.

graph in research paper

When to Use Data Graphs

Graphs are a visual display of information and show the overall shape of your results rather than the details. If used correctly, a visual representation helps your (or your reader’s) brain to quickly understand large amounts of data and spot patterns, trends, and exceptions or outliers. Graphs also make it easier to illustrate relationships between entire data sets. This is why, when you analyze your results, you usually don’t just look at the numbers and the statistical values of your tests, but also at histograms, box plots, and distribution plots, to quickly get an overview of what is going on in your data.

Line graphs

When you want to illustrate a change over a continuous range or time, a line graph is your best choice. Changes in different groups or samples over the same range or time can be shown by lines of different colors or with different symbols.

Example: Let’s collapse across the different food types and look at the growth of our four fish species over time.

line graph showing growth of aquarium fish over one month

You should use a bar graph when your data is not continuous but divided into categories that are not necessarily connected, such as different samples, methods, or setups. In our example, the different fish types or the different types of food are such non-continuous categories.

Example: Let’s collapse across the food types again and also across time, and only compare the overall weight increase of our four fish types at the end of the feeding period.

bar graph in reserach paper showing increase in weight of different fish species over one month

Scatter plots

Scatter plots can be used to illustrate the relationship between two variables — but note that both have to be continuous. The following example displays “fish length” as an additional variable–none of the variables in our table above (fish type, fish food, time) are continuous, and they can therefore not be used for this kind of graph. 

Scatter plot in research paper showing growth of aquarium fish over time (plotting weight versus length)

As you see, these example graphs all contain less data than the table above, but they lead the reader to exactly the key point of your results or the finding you want to emphasize. If you let your readers search for these observations in a big table full of details that are not necessarily relevant to the claims you want to make, you can create unnecessary confusion. Most journals allow you to provide bigger datasets as supplementary information, and some even require you to upload all your raw data at submission. When you write up your manuscript, however, matching the data presentation to the storyline is more important than throwing everything you have at the reader. 

Don’t forget that every graph needs to have clear x and y axis labels , a title that summarizes what is shown above the figure, and a descriptive legend/caption below. Since your caption needs to stand alone and the reader needs to be able to understand it without looking at the text, you need to explain what you measured/tested and spell out all labels and abbreviations you use in any of your graphs once more in the caption (even if you think the reader “should” remember everything by now, make it easy for them and guide them through your results once more). Have a look at this article if you need help on how to write strong and effective figure legends .

Even if you have thought about the data you have, the story you want to tell, and how to guide the reader most effectively through your results, you need to check whether the journal you plan to submit to has specific guidelines and limitations when it comes to tables and graphs. Some journals allow you to submit any tables and graphs initially (as long as tables are editable (for example in Word format, not an image) and graphs of high enough resolution. 

Some others, however, have very specific instructions even at the submission stage, and almost all journals will ask you to follow their formatting guidelines once your manuscript is accepted. The closer your figures are already to those guidelines, the faster your article can be published. This PLOS One Figure Preparation Checklist is a good example of how extensive these instructions can be – don’t wait until the last minute to realize that you have to completely reorganize your results because your target journal does not accept tables above a certain length or graphs with more than 4 panels per figure. 

Some things you should always pay attention to (and look at already published articles in the same journal if you are unsure or if the author instructions seem confusing) are the following:

  • How many tables and graphs are you allowed to include?
  • What file formats are you allowed to submit?
  • Are there specific rules on resolution/dimension/file size?
  • Should your figure files be uploaded separately or placed into the text?
  • If figures are uploaded separately, do the files have to be named in a specific way?
  • Are there rules on what fonts to use or to avoid and how to label subpanels?
  • Are you allowed to use color? If not, make sure your data sets are distinguishable.

If you are dealing with digital image data, then it might also be a good idea to familiarize yourself with the difference between “adjusting” for clarity and visibility and image manipulation, which constitutes scientific misconduct .  And to fully prepare your research paper for publication before submitting it, be sure to receive proofreading services , including journal manuscript editing and research paper editing , from Wordvice’s professional academic editors .

  • Translators
  • Graphic Designers
  • Editing Services
  • Academic Editing Services
  • Admissions Editing Services
  • Admissions Essay Editing Services
  • AI Content Editing Services
  • APA Style Editing Services
  • Application Essay Editing Services
  • Book Editing Services
  • Business Editing Services
  • Capstone Paper Editing Services
  • Children's Book Editing Services
  • College Application Editing Services
  • College Essay Editing Services
  • Copy Editing Services
  • Developmental Editing Services
  • Dissertation Editing Services
  • eBook Editing Services
  • English Editing Services
  • Horror Story Editing Services
  • Legal Editing Services
  • Line Editing Services
  • Manuscript Editing Services
  • MLA Style Editing Services
  • Novel Editing Services
  • Paper Editing Services
  • Personal Statement Editing Services
  • Research Paper Editing Services
  • Résumé Editing Services
  • Scientific Editing Services
  • Short Story Editing Services
  • Statement of Purpose Editing Services
  • Substantive Editing Services
  • Thesis Editing Services

Proofreading

  • Proofreading Services
  • Admissions Essay Proofreading Services
  • Children's Book Proofreading Services
  • Legal Proofreading Services
  • Novel Proofreading Services
  • Personal Statement Proofreading Services
  • Research Proposal Proofreading Services
  • Statement of Purpose Proofreading Services

Translation

  • Translation Services

Graphic Design

  • Graphic Design Services
  • Dungeons & Dragons Design Services
  • Sticker Design Services
  • Writing Services

Solve

Please enter the email address you used for your account. Your sign in information will be sent to your email address after it has been verified.

Your Guide to Creating Effective Tables and Figures in Research Papers

Editing-Queen

Research papers are full of data and other information that needs to be effectively illustrated and organized. Without a clear presentation of a study's data, the information will not reach the intended audience and could easily be misunderstood. Clarity of thought and purpose is essential for any kind of research. Using tables and figures to present findings and other data in a research paper can be effective ways to communicate that information to the chosen audience.

When manuscripts are screened, tables and figures can give reviewers and publication editors a quick overview of the findings and key information. After the research paper is published or accepted as a final dissertation, tables and figures will offer the same opportunity for other interested readers. While some readers may not read the entire paper, the tables and figures have the chance to still get the most important parts of your research across to those readers.

However, tables and figures are only valuable within a research paper if they are succinct and informative. Just about any audience—from scientists to the general public—should be able to identify key pieces of information in well-placed and well-organized tables. Figures can help to illustrate ideas and data visually. It is important to remember that tables and figures should not simply be repetitions of data presented in the text. They are not a vehicle for superfluous or repetitious information. Stay focused, stay organized, and you will be able to use tables and figures effectively in your research papers. The following key rules for using tables and figures in research papers will help you do just that.

Check style guides and journal requirements

The first step in deciding how you want to use tables and figures in your research paper is to review the requirements outlined by your chosen style guide or the submission requirements for the journal or publication you will be submitting to. For example, JMIR Publications states that for readability purposes, we encourage authors to include no more than 5 tables and no more than 8 figures per article. They continue to outline that tables should not go beyond the 1-inch margin of a portrait-orientation 8.5"x11" page using 12pt font or they may not be able to be included in your main manuscript because of our PDF sizing.

Consider the reviewers that will be examining your research paper for consistency, clarity, and applicability to a specific publication. If your chosen publication usually has shorter articles with supplemental information provided elsewhere, then you will want to keep the number of tables and figures to a minimum.

According to the Purdue Online Writing Lab (Purdue OWL), the American Psychological Association (APA) states that Data in a table that would require only two or fewer columns and rows should be presented in the text. More complex data is better presented in tabular format. You can avoid unnecessary tables by reviewing the data and deciding if it is simple enough to be included in the text. There is a balance, and the APA guideline above gives a good standard cutoff point for text versus table. Finally, when deciding if you should include a table or a figure, ask yourself is it necessary. Are you including it because you think you should or because you think it will look more professional, or are you including it because it is necessary to articulate the data? Only include tables or figures if they are necessary to articulate the data.

Table formatting

Creating tables is not as difficult as it once was. Most word processing programs have functions that allow you to simply select how many rows and columns you want, and then it builds the structure for you. Whether you create a table in LaTeX , Microsoft Word , Microsoft Excel , or Google Sheets , there are some key features that you will want to include. Tables generally include a legend, title, column titles, and the body of the table.

When deciding what the title of the table should be, think about how you would describe the table's contents in one sentence. There isn't a set length for table titles, and it varies depending on the discipline of the research, but it does need to be specific and clear what the table is presenting. Think of this as a concise topic sentence of the table.

Column titles should be designed in such a way that they simplify the contents of the table. Readers will generally skim the column titles first before getting into the data to prepare their minds for what they are about to see. While the text introducing the table will give a brief overview of what data is being presented, the column titles break that information down into easier-to-understand parts. The Purdue OWL gives a good example of what a table format could look like:

Table Formatting

When deciding what your column titles should be, consider the width of the column itself when the data is entered. The heading should be as close to the length of the data as possible. This can be accomplished using standard abbreviations. When using symbols for the data, such as the percentage "%" symbol, place the symbol in the heading, and then you will not use the symbol in each entry, because it is already indicated in the column title.

For the body of the table, consistency is key. Use the same number of decimal places for numbers, keep the alignment the same throughout the table data, and maintain the same unit of measurement throughout each column. When information is changed within the same column, the reader can become confused, and your data may be considered inaccurate.

Figures in research papers

Figures can be of many different graphical types, including bar graphs, scatterplots, maps, photos, and more. Compared to tables, figures have a lot more variation and personalization. Depending on the discipline, figures take different forms. Sometimes a photograph is the best choice if you're illustrating spatial relationships or data hiding techniques in images. Sometimes a map is best to illustrate locations that have specific characteristics in an economic study. Carefully consider your reader's perspective and what detail you want them to see.

As with tables, your figures should be numbered sequentially and follow the same guidelines for titles and labels. Depending on your chosen style guide, keep the figure or figure placeholder as close to the text introducing it as possible. Similar to the figure title, any captions should be succinct and clear, and they should be placed directly under the figure.

Using the wrong kind of figure is a common mistake that can affect a reader's experience with your research paper. Carefully consider what type of figure will best describe your point. For example, if you are describing levels of decomposition of different kinds of paper at a certain point in time, then a scatter plot would not be the appropriate depiction of that data; a bar graph would allow you to accurately show decomposition levels of each kind of paper at time "t." The Writing Center of the University of North Carolina at Chapel Hill has a good example of a bar graph offering easy-to-understand information:

Bar Graph Formatting

If you have taken a figure from another source, such as from a presentation available online, then you will need to make sure to always cite the source. If you've modified the figure in any way, then you will need to say that you adapted the figure from that source. Plagiarism can still happen with figures – and even tables – so be sure to include a citation if needed.

Using the tips above, you can take your research data and give your reader or reviewer a clear perspective on your findings. As The Writing Center recommends, Consider the best way to communicate information to your audience, especially if you plan to use data in the form of numbers, words, or images that will help you construct and support your argument. If you can summarize the data in a couple of sentences, then don't try and expand that information into an unnecessary table or figure. Trying to use a table or figure in such cases only lengthens the paper and can make the tables and figures meaningless instead of informative.

Carefully choose your table and figure style so that they will serve as quick and clear references for your reader to see patterns, relationships, and trends you have discovered in your research. For additional assistance with formatting and requirements, be sure to review your publication or style guide's instructions to ensure success in the review and submission process.

Related Posts

Simplifying Qualitative Academic Research

Simplifying Qualitative Academic Research

How to Write About Negative (Or Null) Results in Academic Research

How to Write About Negative (Or Null) Results in Academic Research

  • Academic Writing Advice
  • All Blog Posts
  • Writing Advice
  • Admissions Writing Advice
  • Book Writing Advice
  • Short Story Advice
  • Employment Writing Advice
  • Business Writing Advice
  • Web Content Advice
  • Article Writing Advice
  • Magazine Writing Advice
  • Grammar Advice
  • Dialect Advice
  • Editing Advice
  • Freelance Advice
  • Legal Writing Advice
  • Poetry Advice
  • Graphic Design Advice
  • Logo Design Advice
  • Translation Advice
  • Blog Reviews
  • Short Story Award Winners
  • Scholarship Winners

Need an academic editor before submitting your work?

Need an academic editor before submitting your work?

example of list of tables in research paper

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

How to Write the List of Figures for a Thesis or Dissertation

DiscoverPhDs

  • By DiscoverPhDs
  • September 20, 2020

List of Figures

A list of figures for your thesis or dissertation is exactly that: it’s a list of the names of all figures you’ve used in your thesis or dissertation, together with the page number that they’re on.

The list of figures is especially useful for a reader to refer to as it (1) gives the reader an overview of the types of figures you’ve included in your document and (2) helps them easily find a particular figure that they’re interested in.

Where Does the List of Figures go?

Write your list of figures and list of tables immediately after your list of contents. Unless specifically asked by a journal, you should not include a separate list of figures in a manuscript for peer-review.

Important Points to Remember

Ensure that the figure title in your list of figures are exactly the same as actually used in the main document. Double check that the page numbering is correct and the font size, margins and all other formatting is correct.

Formatting the List of Figures

Starting off, use Roman Numbers (e.g. iv and viii) to number the sections of the Table of Contents, List of Figures and List of Tables (the title page does not have a number written on it). Arabic numbering (e.g. 1, 2, 3) should start from the Introduction onwards.

Keep your margins consistent with those of the rest of the document, as required by your university. Usually this will be a margin of 4cm on the side of the paper that will be bound and 2cm on the opposing side (e.g. the pages printed that will be on the right hand side of the thesis will have a left margin of 4cm).

While the font size of your figure legends will be slightly smaller than the main text, keep the font style of the list of figures the same as the main text (usually 12 pt).

Title this section in all capital letters as “LIST OF FIGURES”.

List each new figure caption on a new line and capitalise the start of each word. Write the figure number on the left, then caption label and finally the page number the figure corresponds to on the right-hand side.

Apply the same formatting principle to the List of Tables in your thesis of dissertation. That is to insert each table numberon a new line, followed by the table title.

Example of the List of Figures

The example below was created in Microsoft Word. You could also consider incorporating other tools such as Endnote to help automate some of the work of entering a new caption for a figure or table. Be mindful of the Figure labelling convention required by your university. For example, you may need to align the Figure numbers with each chapter (e.g. Figure 1.1, 1.2, 1.3…. for Chapter 1 and Figure 2.1, 2.2, 2.3…. for Chapter 2).

List of Figures Example

The term monotonic relationship is a statistical definition that is used to describe the link between two variables.

Scrivener for Academic Writing and Journals

Find out how you can use Scrivener for PhD Thesis & Dissertation writing to streamline your workflow and make academic writing fun again!

Academic Conference

Academic conferences are expensive and it can be tough finding the funds to go; this naturally leads to the question of are academic conferences worth it?

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

example of list of tables in research paper

Browse PhDs Now

Dissertation Title Page

The title page of your dissertation or thesis conveys all the essential details about your project. This guide helps you format it in the correct way.

Overcoming PhD Stress

PhD stress is real. Learn how to combat it with these 5 tips.

Nick-Ballou-Profile

Nick is a first year PhD student at Queen Mary University of London. The long-term goal of his research is to help game designers make games that support healthy engagement and well-being.

Ellen Brewster Profile

Ellen is in the third year of her PhD at the University of Oxford. Her project looks at eighteenth-century reading manuals, using them to find out how eighteenth-century people theorised reading aloud.

Join Thousands of Students

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

APA Sample Paper

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Note:  This page reflects the latest version of the APA Publication Manual (i.e., APA 7), which released in October 2019. The equivalent resource for the older APA 6 style  can be found here .

Media Files: APA Sample Student Paper  ,  APA Sample Professional Paper

This resource is enhanced by Acrobat PDF files. Download the free Acrobat Reader

Note: The APA Publication Manual, 7 th Edition specifies different formatting conventions for student  and  professional  papers (i.e., papers written for credit in a course and papers intended for scholarly publication). These differences mostly extend to the title page and running head. Crucially, citation practices do not differ between the two styles of paper.

However, for your convenience, we have provided two versions of our APA 7 sample paper below: one in  student style and one in  professional  style.

Note: For accessibility purposes, we have used "Track Changes" to make comments along the margins of these samples. Those authored by [AF] denote explanations of formatting and [AWC] denote directions for writing and citing in APA 7. 

APA 7 Student Paper:

Apa 7 professional paper:.

  • Privacy Policy
  • SignUp/Login

Research Method

Home » Table of Contents – Types, Formats, Examples

Table of Contents – Types, Formats, Examples

Table of Contents

Table of Contents

Definition:

Table of contents (TOC) is a list of the headings or sections in a document or book, arranged in the order in which they appear. It serves as a roadmap or guide to the contents of the document, allowing readers to quickly find specific information they are looking for.

A typical table of contents includes chapter titles, section headings, subheadings, and their corresponding page numbers.

The table of contents is usually located at the beginning of the document or book, after the title page and any front matter, such as a preface or introduction.

Table of Contents in Research

In Research, A Table of Contents (TOC) is a structured list of the main sections or chapters of a research paper , Thesis and Dissertation . It provides readers with an overview of the organization and structure of the document, allowing them to quickly locate specific information and navigate through the document.

Importance of Table of Contents

Here are some reasons why a TOC is important:

  • Navigation : It serves as a roadmap that helps readers navigate the document easily. By providing a clear and concise overview of the contents, readers can quickly locate the section they need to read without having to search through the entire document.
  • Organization : A well-structured TOC reflects the organization of the document. It helps to organize the content logically and categorize it into easily digestible chunks, which makes it easier for readers to understand and follow.
  • Clarity : It can help to clarify the document’s purpose, scope, and structure. It provides an overview of the document’s main topics and subtopics, which can help readers to understand the content’s overall message.
  • Efficiency : This can save readers time and effort by allowing them to skip to the section they need to read, rather than having to go through the entire document.
  • Professionalism : Including a Table of Contents in a document shows that the author has taken the time and effort to organize the content properly. It adds a level of professionalism and credibility to the document.

Types of Table of Contents

There are different types of table of contents depending on the purpose and structure of the document. Here are some examples:

Simple Table of Contents

This is a basic table of contents that lists the major sections or chapters of a document along with their corresponding page numbers.

Example: Table of Contents

I. Introduction …………………………………………. 1

II. Literature Review ………………………………… 3

III. Methodology ……………………………………… 6

IV. Results …………………………………………….. 9

V. Discussion …………………………………………. 12

VI. Conclusion ……………………………………….. 15

Expanded Table of Contents

This type of table of contents provides more detailed information about the contents of each section or chapter, including subsections and subheadings.

A. Background …………………………………….. 1

B. Problem Statement ………………………….. 2

C. Research Questions ……………………….. 3

II. Literature Review ………………………………… 5

A. Theoretical Framework …………………… 5

B. Previous Research ………………………….. 6

C. Gaps and Limitations ……………………… 8 I

II. Methodology ……………………………………… 11

A. Research Design ……………………………. 11

B. Data Collection …………………………….. 12

C. Data Analysis ……………………………….. 13

IV. Results …………………………………………….. 15

A. Descriptive Statistics ……………………… 15

B. Hypothesis Testing …………………………. 17

V. Discussion …………………………………………. 20

A. Interpretation of Findings ……………… 20

B. Implications for Practice ………………… 22

VI. Conclusion ……………………………………….. 25

A. Summary of Findings ……………………… 25

B. Contributions and Recommendations ….. 27

Graphic Table of Contents

This type of table of contents uses visual aids, such as icons or images, to represent the different sections or chapters of a document.

I. Introduction …………………………………………. [image of a light bulb]

II. Literature Review ………………………………… [image of a book]

III. Methodology ……………………………………… [image of a microscope]

IV. Results …………………………………………….. [image of a graph]

V. Discussion …………………………………………. [image of a conversation bubble]

Alphabetical Table of Contents

This type of table of contents lists the different topics or keywords in alphabetical order, along with their corresponding page numbers.

A. Abstract ……………………………………………… 1

B. Background …………………………………………. 3

C. Conclusion …………………………………………. 10

D. Data Analysis …………………………………….. 8

E. Ethics ……………………………………………….. 6

F. Findings ……………………………………………… 7

G. Introduction ……………………………………….. 1

H. Hypothesis ………………………………………….. 5

I. Literature Review ………………………………… 2

J. Methodology ……………………………………… 4

K. Limitations …………………………………………. 9

L. Results ………………………………………………… 7

M. Discussion …………………………………………. 10

Hierarchical Table of Contents

This type of table of contents displays the different levels of headings and subheadings in a hierarchical order, indicating the relative importance and relationship between the different sections.

    A. Background …………………………………….. 2

      B. Purpose of the Study ……………………….. 3

      A. Theoretical Framework …………………… 5

             1. Concept A ……………………………….. 6

                    a. Definition ………………………….. 6

                     b. Example ……………………………. 7

              2. Concept B ……………………………….. 8

       B. Previous Research ………………………….. 9

III. Methodology ……………………………………… 12

       A. Research Design ……………………………. 12

             1. Sample ……………………………………. 13

               2. Procedure ………………………………. 14

       B. Data Collection …………………………….. 15

            1. Instrumentation ……………………….. 16

            2. Validity and Reliability ………………. 17

       C. Data Analysis ……………………………….. 18

          1. Descriptive Statistics …………………… 19

           2. Inferential Statistics ………………….. 20

IV. Result s …………………………………………….. 22

    A. Overview of Findings ……………………… 22

B. Hypothesis Testing …………………………. 23

V. Discussion …………………………………………. 26

A. Interpretation of Findings ………………… 26

B. Implications for Practice ………………… 28

VI. Conclusion ……………………………………….. 31

A. Summary of Findings ……………………… 31

B. Contributions and Recommendations ….. 33

Table of Contents Format

Here’s an example format for a Table of Contents:

I. Introduction

C. Methodology

II. Background

A. Historical Context

B. Literature Review

III. Methodology

A. Research Design

B. Data Collection

C. Data Analysis

IV. Results

A. Descriptive Statistics

B. Inferential Statistics

C. Qualitative Findings

V. Discussion

A. Interpretation of Results

B. Implications for Practice

C. Limitations and Future Research

VI. Conclusion

A. Summary of Findings

B. Contributions to the Field

C. Final Remarks

VII. References

VIII. Appendices

Note : This is just an example format and can vary depending on the type of document or research paper you are writing.

When to use Table of Contents

A TOC can be particularly useful in the following cases:

  • Lengthy documents : If the document is lengthy, with several sections and subsections, a Table of contents can help readers quickly navigate the document and find the relevant information.
  • Complex documents: If the document is complex, with multiple topics or themes, a TOC can help readers understand the relationships between the different sections and how they are connected.
  • Technical documents: If the document is technical, with a lot of jargon or specialized terminology, This can help readers understand the organization of the document and locate the information they need.
  • Legal documents: If the document is a legal document, such as a contract or a legal brief, It helps readers quickly locate specific sections or provisions.

How to Make a Table of Contents

Here are the steps to create a table of contents:

  • Organize your document: Before you start making a table of contents, organize your document into sections and subsections. Each section should have a clear and descriptive heading that summarizes the content.
  • Add heading styles : Use the heading styles in your word processor to format the headings in your document. The heading styles are usually named Heading 1, Heading 2, Heading 3, and so on. Apply the appropriate heading style to each section heading in your document.
  • Insert a table of contents: Once you’ve added headings to your document, you can insert a table of contents. In Microsoft Word, go to the References tab, click on Table of Contents, and choose a style from the list. The table of contents will be inserted into your document.
  • Update the table of contents: If you make changes to your document, such as adding or deleting sections, you’ll need to update the table of contents. In Microsoft Word, right-click on the table of contents and select Update Field. Choose whether you want to update the page numbers or the entire table, and click OK.

Purpose of Table of Contents

A table of contents (TOC) serves several purposes, including:

  • Marketing : It can be used as a marketing tool to entice readers to read a book or document. By highlighting the most interesting or compelling sections, a TOC can give readers a preview of what’s to come and encourage them to dive deeper into the content.
  • Accessibility : A TOC can make a document or book more accessible to people with disabilities, such as those who use screen readers or other assistive technologies. By providing a clear and organized overview of the content, a TOC can help these readers navigate the material more easily.
  • Collaboration : This can be used as a collaboration tool to help multiple authors or editors work together on a document or book. By providing a shared framework for organizing the content, a TOC can help ensure that everyone is on the same page and working towards the same goals.
  • Reference : It can serve as a reference tool for readers who need to revisit specific sections of a document or book. By providing a clear overview of the content and organization, a TOC can help readers quickly locate the information they need, even if they don’t remember exactly where it was located.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Thesis Outline

Thesis Outline – Example, Template and Writing...

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Appendices

Appendices – Writing Guide, Types and Examples

Research Paper Citation

How to Cite Research Paper – All Formats and...

Research Report

Research Report – Example, Writing Guide and...

Delimitations

Delimitations in Research – Types, Examples and...

  • Open access
  • Published: 22 February 2024

Understanding implementation of findings from trial method research: a mixed methods study applying implementation frameworks and behaviour change models

  • Taylor Coffey   ORCID: orcid.org/0000-0002-6921-8230 1 ,
  • Paula R. Williamson 2 &
  • Katie Gillies 1

on behalf of the Trials Methodology Research Partnership Working Groups

Trials volume  25 , Article number:  139 ( 2024 ) Cite this article

53 Accesses

1 Altmetric

Metrics details

Trial method research produces recommendations on how to best conduct trials. However, findings are not routinely implemented into practice. To better understand why, we conducted a mixed method study on the challenges of implementing trial method research findings into UK-based clinical trial units.

Three stages of research were conducted. Firstly, case studies of completed projects that provided methodological recommendations were identified within trial design, conduct, analysis, and reporting. These case studies were used as survey examples to query obstacles and facilitators to implementing method research. Survey participants were experienced trial staff, identified via email invitations to UK clinical trial units. This survey assessed the case studies’ rates of implementation, and demographic characteristics of trial units through the Consolidated Framework for Implementation Research. Further, interviews were conducted with senior members of trial units to explore obstacles and facilitators in more detail. Participants were sampled from trial units that indicated their willingness to participate in interviews following the survey. Interviews, and analysis, were structured via the Capability, Opportunity, Motivation Model of Behaviour. Finally, potential strategies to leverage lessons learned were generated via the Behaviour Change Wheel.

A total of 27 UK trial units responded to the survey. The rates of implementation across the case studies varied, with most trial units implementing recommendations in trial conduct and only few implementing recommendations in reporting. However, most reported implementing recommendations was important but that they lacked the resources to do so. A total of 16 senior members of trial units were interviewed. Several themes were generated from interviews and fell broadly into categories related to the methods recommendations themselves, the trial units, or external factors affecting implementation. Belief statements within themes indicated resources issues and awareness of recommendations as frequent implementation obstacles. Participation in trial networks and recommendations packaged with relevant resources were cited frequently as implementation facilitators. These obstacles and facilitators mirrored results from the survey. Results were mapped, via the Behaviour Change Wheel, to intervention functions likely to change behaviours of obstacles and facilitators identified. These intervention functions were developed into potential solutions to reduce obstacles and enhance facilitators to implementation.

Conclusions

Several key areas affecting implementation of trial method recommendations were identified. Potential methods to enhance facilitators and reduce obstacles are suggested. Future research is needed to refine these methods and assess their feasibility and acceptability.

Peer Review reports

Clinical trials provide evidence to support decisions about practice in many aspects of healthcare. As well as generating evidence to inform decision making, trials need to, themselves, be informed by evidence in how they are designed, conducted, analysed, and reported to ensure they produce the highest quality outputs [ 1 , 2 , 3 ]. This is essential to guarantee not only that trials contribute to evidence-based practice, but that all phases of the trial ‘lifecycle’ also support efforts to minimise research waste by building on best practice for how to design, conduct, analyse, and report trials [ 1 , 2 , 4 , 5 ].

Research into how best to design, conduct, analyse, and report clinical trials, known as trial method research [ 1 , 3 ], has expanded in recent years. For example, a widely studied aspect of trial conduct is recruitment. One project, the Online Resource for Research in Clinical triAls (ORRCA), is an ongoing effort to scope methodological work in recruitment. In their initial publication, the ORRCA team identified 2804 articles, published up to 2015, regarding recruitment [ 6 ]. Their most recent update in February 2023 found 4813 eligible papers, an increase of 70% in less than 5 years from the initial publication [ 6 , 7 ]. As this is just one area of trial methodology, it represents only a fraction of the work being done in this space. With such a large volume of research being generated, coordinated efforts are needed to ensure that learning is shared across research groups to prevent duplication of effort and promote collaboration. There is recognition across the trial method research community that there is significant variability in terms of whether and how the findings from this methodological research influence ‘practice’ with regard to trial design, conduct, analysis, or reporting [ 3 , 8 , 9 ]. Similar to clinical practice, where evidence can fail to be implemented [ 10 , 11 ], it is critical that the challenges and opportunities to implementing trial method research findings into practice are understood. This understanding will then maximise the potential for this research to improve health by improving the trials themselves.

Barriers to implementation are known to be complex and involve multifactorial influences [ 12 , 13 , 14 ]. Whilst this is established for clinical evidence [ 15 ], it is also likely to be the case for methodological evidence—yet the specific challenges may be different. Implementation science (and in particular the use of behavioural approaches which are theory-informed) provides a rigorous method for identifying, diagnosing, and developing solutions to target factors with the potential to enhance or impede behaviour change and subsequent integration of those changes [ 2 , 10 , 14 , 16 ]. Data generated using these theoretical approaches are likely more reproducible and generalisable than alternatives [ 2 , 16 , 17 , 18 ]. The potential for lessons from behavioural science to investigate who needs to do what differently, to whom, when, and where, within the context of clinical trials is receiving attention across various stages of the trial lifecycle [ 2 ]. The overall aim of this study was to generate evidence for the challenges and opportunities trialists experience with regard to implementing the results from trial method projects that target the design, conduct, analysis, or reporting of trials.

Overall study description

We designed a sequential exploratory mixed methods study with three linked components:

Case studies : which identified existing examples of trial method research projects with actionable outputs that were believed to influence trial design, conduct, analysis, or reporting practice. “Actionable outputs” were defined broadly as any resource, generated from these projects, that has led to an actual or potential change in the design, conduct, analysis, or reporting of trials.

Survey : which identified the broad range, and frequency, of challenges and opportunities to the implementation of trial method research. Participants were trialists from across the UK, specifically the Clinical Research Collaboration (UKCRC) Network of Registered Clinical Trials Units (CTUs). The UKCRC was established to “help improve the quality and quantity of available expertise to carry out UK clinical trials.” ( https://www.ukcrc.org/research-infrastructure/clinical-trials-units/registered-clinical-trials-units/ ).

Interviews : which explored in depth the challenges and opportunities for implementing trial method research from case study examples and general experience in CTU management.

Theoretical considerations and rationale

It is important when selecting theoretical frameworks, and even more so when combining them within one study, to provide an explicit rationale for the choice of framework(s) [ 14 ]. This study utilised a combined theoretical approach, with the Consolidated Framework of Implementation Research (CFIR) [ 13 ] guiding the survey development, and the Capability, Motivation, and Opportunity Model of Behaviour (COM-B) [ 18 ] guiding the interview guide and analysis. CFIR was designed to synthesise the key elements that underpin implementation efforts [ 13 ]. It was selected in this study to guide the survey design because it provided a systematic framework to structure our inquiry. The CFIR is comprehensive in its descriptions of constructs and how they affect implementation across different organisational levels [ 13 ]. As the survey was intended to focus more explicitly on the organisational structure of the CTUs, the CFIR possessed the context-specific language and concepts to describe and prioritise our initial findings. The COM-B, in contrast, is broader in its scope as a general theory of behaviour and behaviour change. As implementation efforts largely rely on the adoption and maintenance of new behaviours, or changes to existing ones, behaviour change theory is useful to describe the determinants of behaviour and how they relate to one another [ 18 ]. This latter point is particularly relevant for implementation efforts as they are likely to consist of multiple changed behaviours, across different contexts, within an organisation to deliver the ultimate objective of research findings [ 19 ]. The COM-B’s capacity to accommodate such complexity outside the prescribed constructs of the CFIR ensured that all relevant factors to implementation are considered [ 14 ]. The approaches are further complementary in their conception of the socio-ecological layers within CTUs in which implementation takes place. Again, the CFIR provides the context-specific labels to, and ability to prioritise, these layers, with the COM-B acting as a methodological “safety net” to further describe or categorise findings. And finally, the COM-B is linked to a method of intervention development (and policy functions), known as the Behaviour Change Wheel (BCW). Through the BCW, nine potential categories of interventions are linked to the behavioural domains of the COM-B [ 18 ]. This link allows potential solutions to be identified based on the domains found to be most relevant or targetable for the behaviour intended to change.

Case studies

Participants.

Members of the Trials Methodology Research Partnership (TMRP) Working Groups ( https://www.methodologyhubs.mrc.ac.uk/about/tmrp/ ) were invited to contribute. Members of these working groups specialise in one or more areas of clinic trial methodology, and all have academic and/or professional interests in improving the quality of trials.

Data collection

An email was sent directly to members of the TMRP Working Group co-leads to solicit case studies of trial method implementation projects with actionable outputs. The email included a brief description of the project and aims of the case study selection, followed by two questions. The first question asked for any examples of trial method research that respondents were aware of. Question 2 asked respondents to provide what they believed were the “actionable outputs” (i.e. the resources generated that lead to implementation of findings) of those methods research projects. Examples of potential actionable outputs could include published papers, guidelines or checklists, template documents, or software packages.

Data analysis

Responses were collated and reviewed by the research team (TC, PW, KG) for their relevance to the four aspects of design, conduct, analysis, and reporting of trials. These responses were compared with a list of published outputs collected by the HTMR ( Network Hubs:: Guidance pack (mrc.ac.uk) ) to ensure a wide-reaching range of available trial method research. One case study was chosen for each domain of trial method research through team consensus, resulting in four case studies incorporated into the survey.

Directors (or individuals nominated by Directors) of the 52 UKCRC-registered CTUs were invited to participate via email from a central list server independent to the research team.

Inclusion and exclusion criteria

Participants were included if they had been involved in any aspect of trial design, delivery, analysis, or reporting within the network of UKCRC-registered CTUs. Any individuals identifying as not reading, writing, or speaking English sufficiently well to participate, or those unable to consent, were excluded.

The survey was designed, and data collected, via the online survey platform Snap (Version 11). A weblink was distributed to the 52 UK CRC-registered CTUs, along with a description of the study, and a Word document version of the survey (available in Additional file 1 : Appendix 1). CTU staff were instructed to distribute this Word version of the survey to members of staff and collate their responses. Collated responses were then entered into the survey at the provided weblink. The survey was designed utilising the Inner Domains of the CFIR [ 13 ] to broadly capture participant views on how trial method research informed the design, conduct, analysis, and reporting of trials run through their CTU. It assessed the perceived organizational structure of the CTU and how those demographics influence the adoption of trial method research. It also asked specific questions about each of the case studies selected from the previous phase. Responses consisted of a mixture of single-choice, Likert scales from 1 to 9 (1 being negative valence and 9 being positive valence), and free-text.

Examples of trial method research projects suggested by respondents (or research area, e.g., recruitment, if no specific project name was given) were collated and frequency counts for each generated. Frequency counts for the types of actionable outputs from these projects were also calculated. Likert scale responses (ranging from 1 to 9) were analysed through descriptive statistics (mean, standard deviation) to compare responses within and between CTUs, the unit of analysis. Some CFIR domains were assessed by more than one question, and so responses to those questions were averaged to give an overall score for the domain. Scores across all domains for a given site were averaged to give a “general implementation” score. The individual scores on measures of these constructs are presented below using a coloured heatmap to highlight areas of high (green) to low (red) activity and provide easy comparison across and within sites. Additional free-text data were analysed using a directed content analysis approach [ 20 ]. Terms and phrases that occurred frequently within this data were collated and then themes summarising barriers and opportunities were generated.

Survey responders indicated their willingness to be contacted for participation in an interview. Emails were sent directly to those who indicated interest in participating.

Recruitment and data collection

Interviews were conducted by a trained qualitative researcher (TC) and structured using a theory-informed topic guide. This topic guide (Additional file 2 : Appendix 2) was developed using the COM-B Model of Behaviour [ 18 ]. Questions prompted interview participants to consider the behavioural influences relevant to implementing findings from trial method research generally and from the selected case studies. Interviews were conducted and recorded through Microsoft Teams. Verbal consent to participate in interviews was obtained and recorded prior to interviews beginning. Recordings were transcribed verbatim by a third party (approved by the University of Aberdeen), de-identified, and checked for accuracy.

Data from interviews were imported into NVivo (V12, release 1.6.1) and analysed initially using a theory-based (COM-B) content analysis [ 20 ], which allowed data to be coded deductively informed by the domains of the COM-B. This involved highlighting utterances within the transcripts and assigning them to one of the six behavioural sub-domains: “psychological capability”, “physical capability”, “social opportunity”, “physical opportunity”, “reflective motivation”, or “automatic motivation”. The next phase of analysis was inductive, allowing identification of additional themes that may have been outside the COM-B domains but were still deemed relevant to the research question. One author (TC) completed coding independently for all interviews. A second author (KG) reviewed a 10% sample of interviews and coded them independently. Coding was then compared for agreement and any discrepancies resolved. Data were compared and coded through a process of constant comparison to provide a summary of key points that interview participants considered to be important. Interview data were specifically explored for any difficulties reported by trialists with regard to the challenges, opportunities, and potential strategies to facilitate the implementation of findings. These data were collected under “belief statements”, which collected similar statements made across participants under a descriptive heading informed by the statements’ COM-B domain. For instance, similar statements on the availability of resources could be collected under a belief statement, “We do not have enough resources”, representing a barrier within the COM-B domain of “physical opportunity”. Belief statements were then analysed for themes across COM-B domains. These themes were developed as narrative summaries of recurrent experiences, barriers, and facilitators to implementation of methods findings. Themes are presented below with their component COM-B domains indicated within the theme’s title. This thematic framework was reviewed, refined, and agreed by consensus of the research team.

Identifying potential solutions

Relevant COM-B domains identified during the interviews and agreed by group consensus were mapped to behavioural intervention functions. Mapping of intervention functions was based on instructions within a behavioural intervention guideline known as the Behaviour Change Wheel (BCW) [ 18 ]. The BCW describes the intervention functions that are believed to influence the individual domains of the COM-B. For example, a lack of psychological capability could be targeted with the intervention function “Education”, which is defined as “increasing knowledge or understanding” [ 18 ]. More than one intervention function is available for each COM-B domain and domains often share one or more intervention functions in common. Utilising the definitions and examples of intervention functions applied to interventions, the research team generated potential solutions based on the available intervention functions targeting the relevant COM-B domains. These solutions were additionally based on the research team’s impressions of targetable belief statements within relevant COM-B domains. For example, if a lack of knowledge was identified (and thus psychological capability) a blanket educational intervention would not necessarily be fit for purpose if only a particular group within an organisation lacked that knowledge whilst others did not. The potential solutions were refined through application of the Affordability, Practicability, Effectiveness and cost-effectiveness, Acceptability, Side-effects and safety, Equity (APEASE) criteria. Application of these criteria to the selection of intervention functions is recommended by the BCW so that research teams can reflect on factors that may limit the relevance and suitability of potential solutions to stakeholders [ 18 ].

Six of 16 Working Group co-leads responded with potential case studies for inclusion. Participants identified a number of trial method research projects, and the project’s outputs, via free-text response to the email prompts. A total of 13 distinct projects were reported by the respondents, primarily in the areas of trial design and analysis, with a particular emphasis on statistical and data collection methods. As a result, case studies for methods research targeting the other two areas of a trial lifecycle, conduct, and reporting, were selected from the list collated by the research team. The four case studies [ 21 , 22 , 23 , 24 ] were selected to consider the variability of project focus across the four areas of trial method research. The selected case studies are described below in Table  1 .

Site demographics

A total of 27 UK CTUs (Table  2 ) responded to the survey, just over half of all UK CRC-registered CTUs ( N  = 52). CTUs were primarily in operation from 10 to 20 years (55%) or more than 20 years (30%). The size of CTUs, by staff number, were divided fairly equally between the small (< 50), medium (50–100), and large (100 +) categories. Most sites characterised themselves as moderately ( n  = 12) to highly stable ( n  = 12) in regard to staff turnover.

Inner domains of the CFIR: culture, implementation climate, networks, and communication

Alongside the structural demographic characteristics described above, we assessed other constructs within the CFIR’s Inner domains. The individual scores on our measures of these constructs are presented in Table  3 below using a coloured heatmap to highlight areas of high to low activity and provide easy comparison across and within sites. Most sites ( n  = 24) achieved general implementation scores between 5 and 7. Typically, scores were reduced due to low ratings for available resources (i.e. money, training, time) within the CTU. Time possessed the lowest individual score, with an average of 3.2 (SD = 1.9). The individual item with the highest average score, 8.2 (SD = 1.3), asked whether relevant findings were believed to be important for the CTU to implement. Finally, available training/education resources were the item with the highest variability across sites, with a standard deviation of 2.2.

Implementation of example case studies

The two case studies that were the most widely implemented were the DAMOCLES charter and the guidelines for statistical analysis plans. Both case studies were implemented fully by a majority of sites ( n  = 21) with a further minority implementing them at least partially ( n  = 5). The recommendations for internal pilots was fully implemented in some sites ( n  = 8), partially in others ( n  = 9), but was not implemented at all in still others ( n  = 10). The RECAP guidance was not implemented at all in 20 sites, partially in five, and fully in two.

Survey participants reported several key obstacles and facilitators to implementation of the case studies. These factors are summarised, along with the degree of implementation of each case study across the CTUs, in Table  4 below. Two of the most frequently cited factors to enhance or hinder implementation related to the dissemination of findings. The first concerned how findings were packaged for dissemination, with survey respondents noting the utility of templates and write-ups of examples. The second related to the communication of new findings. Respondents mentioned professional networks and conferences as useful in keeping CTU staff up to date on relevant methods research. Workshops, presentations, and other events within those networks also provided these same opportunities with the additional benefit of being tailored to translating findings into practice. A frequently mentioned barrier described potentially inadequate dissemination efforts, as participants cited a lack of capacity to “ horizon scan ” for new findings. Time and funding constraints were described as leading to this lack of capacity. Finally within communication, participants reported that if a member of their CTU had been involved in methods research, it was more likely to be implemented.

Participant characteristics

Sixteen individuals (Table  5 ) participated in interviews, representing CTUs from across the UK. Participants were primarily directors or other senior members of their respective CTUs. Half of respondents ( n  = 8) had been in these roles for less than 5 years, with a further seven being in their roles from 5 to 10 years. Most ( n  = 11) had been working in trials generally for 20–29 years.

Interview findings

Interviews were conducted remotely and typically lasted 30–45 min. Belief statements were generated under the domains of the COM-B. Those domains were psychological capability, reflective motivation, automatic motivation, physical opportunity, and social opportunity. Cross-domain themes were generated from related belief statements to summarise overall content. Seven themes were identified: “The influence of funders”, “The visibility of findings”, “The relevance and feasibility of findings”, “Perceived value of implementation research”, “Interpersonal communication”, “Existing work commitments”, and “Cultural drivers of implementation”. Themes are presented in detail below with the relevant COM-B domains to which they are linked presented in parentheses. The themes are further organised into the socio-ecological levels for which they are most relevant, i.e. at the level of the CTU (Internal), outside the CTU (External), or to do with the findings themselves (Findings).

External factors

Theme 1—The influence of funders (social/physical opportunity and reflective motivation).

Interview participants spoke of the influence of funders as important to what trial method research findings are implemented. These influences were comprised of both the resource implication of funding allocation (physical opportunity) as well as the cultural influence that funders possess (social opportunity). With regard to resource implications, there were restrictions on what implementation-related activities trial staff could perform based on the lack of protected time within their roles that could be allocated to implementation (physical opportunity). Secondly, limitations on time were superseded by requirements set out by funders on which trial method research findings needed to be implemented within their trials. If particular findings were deemed necessary by bodies like the NIHR, CTU staff had no choice but to find time to implement them (reflective motivation). Related to these beliefs was the idea that clear efforts at implementing relevant trial method research findings could signal to funders that the CTU team possessed the skills required to conduct trials, thereby increasing the opportunities for funding through a sort of “competitive edge” (reflective motivation).

“I think the progression criteria, as I said, I think is being driven more by the funders expectations rather than anything else, and then other people go, “Well, if the funder expects to see it, I just have to do it,” so then... they might grumble, basically, but if you’re going to put your grant application in, and you want it to be competitive, this is what we have to do.” – Site 7, director

Theme 2—The visibility of findings (social/physical opportunity and psychological capability).

One of the main barriers cited by interviewees was simply knowing about trial method research findings. Participants described the limits on their own time and capacity in “horizon scanning” for new publications and resources, which was often compounded by the sheer volume of outputs (psychological capability).

“I mean probably the greatest competing demand is being up to speed on what’s coming out that’s new. That’s probably where I would feel that… yes, trying to… I know everyone feels like they don’t have enough time to just read and be aware of the stuff coming out, so that’s… I’m more anxious, and I know others are, that there’s stuff being done that we don’t even know about to try and implement, so in some ways we might almost be repeating the wheel of trying to improve best practice in a topic area, and actually someone’s done loads of work on it.” – Site 3, director.

However, interviewees highlighted several resources as means to close this knowledge gap. Dedicated channels for dissemination of important trial method research findings were one means to stay on top of emerging literature. These could be newsletters, websites, or meetings where part, or all, of the agenda was set aside for updates on findings (physical opportunity). Other resources mentioned included more social opportunities to hear about the latest research, at conferences like the International Clinical Trials Methodology Conference (ICTMC) or network events like training and workshops. These events were also cited as important venues to share lessons learned in implementing trial method research findings or to air general frustrations on the complexities of trial conduct and management (social opportunity). Finally, these networking opportunities were identified by interviewees as potent incubators for collaborations, inspiring new trial method projects or establishing links to assess existing ones. Interviewees reported that the opportunity to be involved in these methods projects worked to also raise awareness of their outputs as well as increasing the perceived relevance of these outputs to CTU staff (psychological capability).

“Again, I think I was very aware of [statistical analysis plans] in my previous role as well, so I’d been along to some of the stats group meetings that the CTU networks have run where this had been discussed before it was published. I think they certainly involved a lot of the CTUs in developing that as well and in canvassing comments that went into the paper. I think potentially that would have been easier for people to implement because we’d had some involvement in the developmental bit as well as it went along.” – Site 22, academic

Internal factors

Theme 3—Interpersonal communication (psychological capability, social/physical opportunity, and automatic motivation).

As our participants were senior members of their respective CTUs, they often described aspects of their role and how their efforts mesh with the overall culture of the CTU. A recurrent feature reported by interviewees relating to their role was to be the central figure in communicating the importance of implementation convincingly to their staff and trial sites. This meant they had to advocate for the relevance of trial method research findings to their CTU staff and motivate staff on changing their processes to align with the findings (reflective motivation). This aspect of communication could be more challenging with chief investigators if they were not convinced of the utility of implementation within their own trials, particularly if they anticipated opportunity or resource cost to hosting the research itself or the process changes of implementing findings (social/physical opportunity). Regardless of where it originated, such resistance to change could be frustrating and draining to senior members that were attempting to spearhead implementation efforts (automatic motivation).

“R – Was it ever stressful or frustrating to implement certain things? P – Yes, I would say it can definitely be. I would be lying if I said no. Because change is always.. there’s always a resistance to change in every institution, so it’s not easy to change things. Yes, it can be frustrating, and it can be painful. Things that help are probably when it’s a requirement and when it’s... whatever you do it goes into your SOPs, and then you say, ‘This is how I have to do it, so this is how we will do it.’ But getting to the step of the institution to recognise it, and the people you’re working with, it can be frustrating because there could be arguments like are hard to argue back like, ‘We don’t have the resources, we don’t have the time. Now is not the moment, we’re...’ so there’s all of these things, but also there’s the effort that it takes to convince people that it’s worthwhile doing the change. It’s definitely... it can be frustrating and disappointing, and it takes a lot of energy.” – Site 21, group lead

However, some broader cultural aspects of the CTU appeared to reduce such frustrations. Participants described that their CTU members were often open to new ideas and that such receptivity facilitated implementation (social opportunity). This openness to change was leveraged through the communication skills of senior staff that were previously mentioned and their ability to solicit opinions and feedback from their staff (psychological capability). Such discussions often took place at internal trainings or meetings that incorporated some focus on implementation efforts for the CTU staff (physical opportunity). These opportunities not only afforded discourse on the practicalities of implementation but also helped to raise general awareness of trial method research findings as well as potential adaptations of findings to better suit the individual requirements of the CTU.

“Yes, I mean at our Trials Unit, I run our monthly trial methodology meetings, so these are predominantly attended by statisticians, so we do focus more on trial methodology that’s more statistical in flavour, but we do always cover the new updates and any key publications we’ve seen. I find that’s a great format for getting people interested and excited in these new methods and distilling them down. Generally, across the unit, we have wider… they’re like two forums, just where everyone gets together, and we tend to have bitesize sessions there where we can distil something. Actually, they’re quite useful because internally, we can distil something new to people but in a bitesize chunk so that people are aware and then can take it further and develop specific… if it’s something quite big, then we can develop working groups to look into it and come to a more solid plan of how we can actually implement it if it seems useful.” – Site 25, academic

Theme 4—Existing work commitments (physical opportunity).

Whilst openness to implementation at the CTU, driven by leadership advocating for its importance, was often present in the interviews, resource restrictions were still an ever-present factor impacting the opportunities for CTU staff to improve practice. Interviewees reported that because any change to be implemented required time and effort to action, mentions of these opportunity costs were reflected universally across our sample. The CTU staff, according to their directive, must prioritise the design of new trials and the delivery of ongoing trials.

“But you know, it’s real, it’s a real challenge and intention to be able to keep your eye on the ball and the many different competing priorities that there are. It does sound like a bit of a weak excuse when you say it out loud. So, our focus is on doing the trials, but of course we should always be trying to have an eye on what is the evidence that it’s underpinning what we do in those trials. We should. But with the best will in the world, it’s writing applications, responding to board comments, getting contracts done once things are funded, getting trials underway. The focus is just constantly on that work of trying to win funding and delivering on what you said you were going to deliver, in amongst all the other business of running a CTU or recruiting staff, managing funding contracts, dealing with our institutions, our universities, our local trusts. All the efforts that go into getting trials underway in terms of writing documents and approvals and recruiting sites, you know?” – Site 10, director

Mitigating these resource restrictions often meant looking to other strategies (mentioned in the next theme) that might allow CTU staff to carve out some capacity towards implementation.

Theme 5—Cultural drivers of implementation (psychological capability, physical opportunity, reflective motivation).

As senior members of their respective CTUs, our participants displayed clear motivations to implement trial method research. They expressed that they would like to see the staff in the CTU improve both the uptake of trial method research findings, as well as generating their own method research. This was part of a larger desire to create a culture within their CTUs that encourages and supports research (reflective motivation).

“I hope that within the Trials Unit, I also create an environment where I’m trying to encourage people to not always work to capacity, so they do have the headroom to go away and explore things and to try things and to develop their own research ideas, so that we can say to people okay. Whether it’s looking at different patient information sheets, whether it’s looking at different recruitment strategies, whether it’s looking at different ways of doing data cleaning across sites, looking at different ways of delivering training to people for data entry because we’ve lots of different ways of delivering training and we still get a very high error rate. I’m sure there are other Trials Units that are doing the same thing, so we should be publishing and sharing that with Trials Units. I’m trying to create that environment.” – Site 1, director

Some potential avenues to promote that development were offered by participants. Firstly, participants were confident in their team’s expertise and ability to either generate or implement trial method research findings. This was evidenced through ongoing work being done within their CTU or discussions with their staff on areas they would like to dedicate time to (psychological capability). An important role for the senior members of staff is then to set out expectations for their teams around how they can leverage their expertise within implementing or generating trial method research findings and for senior members to offer the necessary support for that to happen. One option put forward to facilitate this leveraging of expertise was to provide career development opportunities centred on implementation. This could simply be allocating staff’s time to focus on implementation projects, protecting their time from usual work commitments. A further development opportunity would be appointing so-called “ champions ” within the CTU whose explicit role is to identify trial method research findings and coordinate their implementation (physical opportunity).

“Because sometimes what I think is [...] you need a champion, you need every CTU to implement these things and because every trial or every trials unit is composed of different people, so I would probably champion the SAPs part because I’m the statistician, and I make sure that that goes ahead, but someone else needs to champion the one on the patients, probably. Not necessarily. I would champion for all of these things, but because... I think it's finding these people that are the ones that see the value and then be the drivers of the unit. I think that will probably help. […] But I honestly think the best way is just reaching a champion for each of these areas and reaching out to them and saying, ‘Can you... what do you think of this, and what would you do to implement it in your own unit?’” – Site 21, group lead

Factors related to findings

Theme 6—Relevance and feasibility of findings (physical opportunity, reflective motivation, and psychological capability).

Not all findings from trial method research are applicable to all trials and there to all CTUs. For instance, some of our participants mentioned that the progression criteria recommendations were not widely implemented by their CTU staff because they did not often include internal pilots in their trials. So, once the challenges of knowing about trial method research findings are overcome, CTU staff then need to make decisions on what is most relevant to their trial portfolio and what they would like to prioritise implementing (reflective motivation). This prioritisation was dependent on two factors, the CTU staff’s ability to adapt findings to their needs and the implementation resources that findings are packaged with. These factors appeared to be interconnected as sufficient resources to aid implementation, such as training workshops, could reduce the burden of adaptation (physical opportunity). Conversely, staff that perceived their CTU as capable of adaptation could do so even when implementation resources were lacking, such as when trial method research findings are only shared via publication (psychological capability).

“I think that resources that are guidance types widely available, well-advertised, are probably the most... the easiest way. Everything that makes it easier for a person that has this little win of saying, ‘Oh, yes, we’ve probably considered doing things differently,’ anything that minimises that burden in a system I do. For example, with the SAPs, it’s not just the paper and the guidance, but it’s the templates and the little things that you say, ‘Oh, I can start from here, and then if I just use this and this, then the work is so much less […]’ It’s just that thinking of resources that at least create an easy start point for a person that is the right person. I think that would be the best strategy for me, and make them widely available and well-advertised and probably, I don’t know, distribute them, contact the CTUs and say, ‘By the way, here’s a nice resource that you can use if you want to improve this and that.’ I think anything like that could probably be the way I would go around improving the implementation and the uptake because I feel that the goodwill is there.” – Site 21, group lead

Theme 7—Perceived value of implementation (reflective motivation).

Following on from the idea that there is the “ goodwill ” to implement trial method research findings, it was unsurprising that our participants reported believing that implementation research is important. Many believed that uptake of findings had clear benefits to improving the practice of their CTU. Even for those findings of trial method research that were less enthusiastically received, this appeared to be because the CTU staff were already operating at a high standard and that trial method research findings served to simply reassure them of the quality of their practices.

“I guess yes, I would say so, they help enhance them. Thinking about the first one on progression criteria, we didn’t really have any standard in house guidance on that, so actually reaching out and using that was great because we needed something to base it on. Whereas I’d say for the others, with the Damocles ones and the one on SAP guidance, we did already have in house guidelines for SAPs and DMC charters, but these bits of work have helped to inform them. In a way, they help clarify that most of what you are doing is good practice and then some additional things that could be added in.” – Site 25, academic

Alongside the efficiency and quality benefits to the CTU and its practices, participants also described a desire to implement findings from trial method research because of their promise to improve the quality of trials, and the evidence they generate, more broadly. For example, this could be improved efficiency leading to cost-effective trials to free up funding for other research. It could also be participant-centred improvements that have both ethical implications as well as bolstering the public’s trust in the research process. And, most importantly it seemed, improvements across trials would lead to better evidence to base healthcare decisions on. Finally, implementation of findings from trial method research helps to signal that the CTU is dedicated to best practice and is innovative in pursuing those ideals. There was a perception that it can lead to increased reputation amongst peers and the public as well as making the applications from the CTU attractive to funders.

“I think they maybe come under some of the reasons that you said already, but they are incentives to do [implementing trials methods research findings] because we’re all in the business of trying to produce evidence for interventions that are going to make a difference usually in the NHS, not always, but depending what it is that we’re trialling. But ultimately, you know, we’re all in the business of trying to produce evidence that’s going to get used and make a difference to the patients, and if that can happen more quickly, cheaply, more efficiently, trials that are run better with an evidence base underpinning what happens in the trials, then yeah, that’s why we should be doing it. That’s all incentives to do it.” – Site 10, director

As stated above in “Interview findings”, the COM-B domains identified were psychological capability, reflective motivation, automatic motivation, physical opportunity, and social opportunity. These five domains map to all nine intervention functions within the BCW. Two, “Restriction” and “Coercion”, were eliminated due to limited practicability and acceptability. Potential solutions were generated that targeted specific aspects of beliefs within our themes. The primary factors identified across themes were distilled into three intervention targets. Those targets were as follows: awareness of trial method research findings, the effort required to implement findings, and the culture around implementing findings. Eight potential interventions were generated which are listed in Table  6 .

Awareness of trial method research findings

The first proposed intervention is the incorporation of sessions specific to sharing research findings into the agendas of clinical and methodology conferences. These sessions would serve as a dedicated conduit for trialists to share and receive new methods research findings, giving dedicated time and space to do so. The social elements of these sessions would also benefit implementation through less formal opportunities to share feedback and other comments on recommendations that can then be addressed by the associated researchers present.

Effort required to implement findings

The second proposed intervention would target the effort required to implement findings. As time is at a premium within CTUs, any pre-emptive efforts on the part of the methods research teams to ensure their recommendations are accessible, translatable, and clearly relevant to CTU staff will assist in those recommendations being implemented. This could include template documents, case studies of implementation, software packages, etc. Any resource beyond the publication of results would seem desirable to CTU staff to assist in their efforts at implementation.

Changes to culture

The third potential solution identified would target the cultural changes needed to re-prioritise the directions of CTUs towards implementation of findings. This would proceed mainly through a change in funder attitudes towards the importance of trial method research. Funders would need to provide dedicated funding/time within CTU’s contracts and/or trial grants to allow for the proper conduct and/or implementation of trial method research.

Other potential solutions

As many of our reported barriers are interconnected, so too do several of our proposed solutions target multiple barriers/opportunities to improve implementation. Many of these rely primarily on cultural shifts within the CTUs themselves, where existing structures are modified to accommodate implementation efforts. For example, ensuring that CTU meeting agendas incorporate dedicated time towards discussing implementation efforts or for roles to be established/re-structured that focus on championing these efforts.

This paper presents findings from our mixed methods study on the challenges and opportunities to implementing trial method research findings. Exploration of notable trial method research findings generated four cases studies that were used to solicit implementation experiences from trial staff through survey and interviews. The survey data allowed us to identify trends in the adoption of the case studies in a sample of half of the registered CTUs within the UK. Demographic data from participating CTUs demonstrated some similarities in implementation factors that are consistent across sites, such as a lack of resources. More positive similarities were identified as well, such as the shared belief that implementation research is important. Participants volunteered a number of motivators, such as adhering to best practice, or barriers, such as time/resource limitations, that affected their CTU’s implementation of these case studies and trial method research findings more generally. Our interviews with senior CTU staff further explored these motivators and barriers to implementation through a behavioural lens. A range of relevant themes across three socio-ecological levels (Findings, Internal, and External) were identified from our behavioural analysis.

Findings-level factors that affected implementation related to the quality and accessibility of the research and its outputs, and its perceived relevance to the trials undertaken in the CTUs. Trial method research findings that were ‘well-packaged’ (e.g., included templates or easy to follow guidance) were believed to assist in implementation. Findings that had clear benefits to the work done at a CTU, such as streamlining processes, or the outcomes of the trials themselves, such as improving their quality, were more readily implemented. Factors internal to the CTUs included the interpersonal communication of the staff, their existing workloads, and the culture surrounding implementation. Open communication between members of the CTU, spearheaded by senior staff, seemed to increase buy-in from staff on the relevance of trial method research findings. This buy-in would appear essential to motivate staff that are already stretched thin by their commitments to design and deliver trials. Efforts to improve cultural expectations around implementation were seen as a mechanism to create further opportunities for staff to dedicate to adopting findings. These efforts could be restructuring current staff roles or establishing new ones with a greater focus on implementation rather than strictly trial delivery. External factors affecting implementation of trial method research findings were primarily those linked with the expectations of funders and the availability of findings. Funders were said to drive both cultural expectations related to best practice, as well as creating capacity (or not) for CTU staff through provision of funds that could allow dedicated time for implementation efforts. The availability of findings had to do largely with the channels available for dissemination of findings. The more opportunities trialists had to be exposed to findings, the more likely they were to adopt those findings in their respective CTUs.

Strengths and limitations

Our project has several key strengths. The mixed methods nature of its design allowed for a more complete investigation of implementation factors than either quantitative or qualitative measures alone. The project utilised a combined theoretical approach, taking advantage of the CFIR in survey design and the COM-B in interview design and analysis. The combination of these approaches ensured that our project had the investigative potential to explore the specific implementation factors and general behavioural factors undermining the successful implementation of trial method research. Others have taken a similar epistemological approach in combining the CFIR and COM-B (and the related Theoretical Domains Framework) to investigate challenges in other contexts [ 14 , 25 , 26 , 27 ].

Our project solicited input from a variety of stakeholders in CTUs across the UK to ensure a diverse perspective on implementation challenges. However, our sample was primarily those with a statistics background, along with the number of responses to identify case studies being relatively low. We attempted to correct for this low response rate and homogeneity of response by agreeing as a team which case studies to include outside those offered by our respondents. However, we cannot say how selection of other case studies may have affected our responses to the surveys and interviews. It may be that particular projects had inherently different challenges to implementation that are not represented here. However, by including general organisational-level factors that may influence implementation, we have identified factors that are likely to be generalisable to a range of implementation efforts. A further bias is one of self-selection. It is possible that the CTUs and members that responded to our invitations are more active in implementing trial method research findings and would thus be more interested in participating in the project. It may also be that those CTUs that face the most challenges did not have the capacity or motivation to respond to our invitation due to the time it would take away from trial delivery. This may help to explain our response rate of about half of the 52 registered CTUs. Responses could have also been limited in our surveys as we asked CTUs to collate their answers. This may have led to unintended desirability effects, with some staff feeling unable to offer honest opinions on their CTU.

Recommendations for future

This project has identified a number of areas for future efforts in improving the implementation of trial method research findings. The themes described here can provide a starting point for trial method researchers to consider when implementing and/or disseminate findings from method research. This could include creating plans for how the findings will reach the appropriate CTU teams, how to articulate the importance of findings to those teams, or how to best package those findings to make them more readily accessible, and thus implementable, for the CTU teams. Further, it could prompt methods researchers to consider who should be involved in their research and when, potentially incorporating members from different institutions and organisations who would be required to implement any findings and doing so earlier in the process.

Where these obstacles still exist, future research on the implementation of findings can bridge the gap between research and practice. Our approach describes obstacles and facilitators in a standardised language common to behavioural and implementation science. Along with this clearer articulation of what works, for whom, how, why, and when, links to behavioural theory provides a process to design interventions [ 18 , 28 ]. Although we have identified some preliminary intervention options, future work could produce potential options not accounted for here, but utilising lessons learned from our findings. Further development of these strategies through selection of BCTs targeting one or more of the identified areas for improvement, refined through co-production with stakeholders, would be the next stage of the intervention design process [ 18 , 29 ]. Finally, assessment of the effectiveness of these interventions in improving the implementation of trial method research findings would be warranted. Additionally, as our project was sampled from UK CTUs, further work could explore the generalisability of these findings to settings outside the UK, particularly where trial units are noticeably different in their organisation.

We have presented findings exploring the obstacles and facilitators to the implementation of trial method research findings. Challenges facing CTUs at multiple levels, including demands on time and resources, internal organisational structure, and quality of findings, greatly affect their staff’s ability to incorporate findings into their workflow. We have suggested several potential areas to target with further intervention development based on behavioural theory to maximise the potential for change. These strategies, and others, would need to face refinement and the scrutiny of stakeholders, as well as evaluation of their effectiveness. Ultimately, our project highlights the motivation of trial staff to deliver quality trials underpinned by the latest evidence. However, this motivation is hindered by the realities of ongoing trial logistics and the difficulties faced in identifying this evidence. Trial methodologists will need to work closely with CTU staff, funders, and regulatory bodies to set priorities on what needs to be implemented and how to make that more achievable in light of the challenges faced.

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article (and its additional files). Additional data is available upon reasonable request.

Abbreviations

Affordability, Practicability, Effectiveness and cost-effectiveness, Acceptability, Side-effects and safety, Equity

Behaviour change technique

Behaviour change wheel

Consolidated Framework of Implementation Research

Capability, Motivation, and Opportunity Model of Behaviour

Clinical trial unit

DAta MOnitoring Committees: Lessons, Ethics, Statistics

Enhancing the QUAlity and Transparency Of health Research

Hubs for Trial Methodology Research

International Clinical Trials Methodology Conference

Medical Research Council

National Institute for Health and care Research

Online Resource for Research in Clinical triAls

REporting Clinical trial results Appropriately to Participants

Statistical analysis plans

Trials Methodology Research Partnership

UK Clinical Research Collaboration

Welcome to ORRCA. https://www.orrca.org.uk/ . 2023

Altman DG. The scandal of poor medical research. BMJ. 1994;308:283–4. https://doi.org/10.1136/bmj.308.6924.283 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Michie S, Atkins L, West R. The Behaviour Change Wheel. A Guide to Designing Interventions: Silverback Publishing, Sutton; 2014.

Google Scholar  

Meeker-O’ Connell A, Glessner C, Behm M, et al. Enhancing clinical evidence by proactively building quality into clinical trials. Clin Trials. 2016;13:439–44. https://doi.org/10.1177/1740774516643491 .

Article   PubMed   Google Scholar  

Hsieh H-F, Shannon SE. Three Approaches to Qualitative Content. Analysis. 2005;15:1277–88. https://doi.org/10.1177/1049732305276687 .

Article   Google Scholar  

Gamble C, Krishan A, Stocken D, et al. Guidelines for the Content of Statistical Analysis Plans in Clinical Trials. JAMA. 2017;318:2337–43. https://doi.org/10.1001/jama.2017.18556 .

Rangachari P, Rissing P, Rethemeyer K. Awareness of evidence-based practices alone does not translate to implementation: insights from implementation research. Qual Manag Health Care. 2013;22:117–25. https://doi.org/10.1097/QMH.0b013e31828bc21d .

Pirosca S, Shiely F, Clarke M, Treweek S. Tolerating bad health research: the continuing scandal. Trials. 2022;23:458. https://doi.org/10.1186/s13063-022-06415-5 .

Article   PubMed   PubMed Central   Google Scholar  

Birken SA, Powell BJ, Presseau J, et al. Combined use of the consolidated framework for implementation research CFIR and the Theoretical Domains Framework TDF a systematic review. Implement Sci. 2017;12:2. https://doi.org/10.1186/s13012-016-0534-z .

Glanz K. BISHOP DB The Role of Behavioral Science Theory in Development and Implementation of Public Health Interventions. Annu Rev Public Health. 2010;31:399–418. https://doi.org/10.1146/annurev.publhealth.012809.103604 .

Smyth RMD, Jacoby A, Altman DG, et al. The natural history of conducting and reporting clinical trials: interviews with trialists. Trials. 2015;16:16. https://doi.org/10.1186/s13063-014-0536-6 .

Lau R, Stevenson F, Ong BN, et al. Achieving change in primary care—causes of the evidence to practice gap systematic reviews of reviews. Implement Sci. 2016;11:40. https://doi.org/10.1186/s13012-016-0396-4 .

Grol R, Grimshaw J. From best evidence to best practice: effective implementation of change in patients’ care. Lancet. 2003;362:1225–30. https://doi.org/10.1016/S0140-6736(03)14546-1 .

Damschroder LJ. Clarity out of chaos: Use of theory in implementation research. Psychiatry Res. 2020;283:112461. https://doi.org/10.1016/j.psychres.2019.06.036 .

Damschroder LJ, Aron DC, Keith RE, et al. Fostering implementation of health services research findings into practice a consolidated framework for advancing implementation science. Implement Sci. 2009;4:50. https://doi.org/10.1186/1748-5908-4-50 .

Guyatt S, Ferguson M, Beckmann M, Wilkinson SA. Using the Consolidated Framework for Implementation Research to design and implement a perinatal education program in a large maternity hospital. BMC Health Serv Res. 2021;21:1–1077. https://doi.org/10.1186/s12913-021-07024-9 .

Paul G, Douglas AG, Patrick B, et al. Reducing waste from incomplete or unusable reports of biomedical research. Lancet. 2014;383:267–76. https://doi.org/10.1016/S0140-6736(13)62228-X .

Kearney A, Harman NL, Rosala-Hallas A, et al. Development of an online resource for recruitment research in clinical trials to organise and map current literature. Clin Trials. 2018;15:533–42. https://doi.org/10.1177/1740774518796156 .

Willmott T, Rundle-Thiele S. Are we speaking the same language? Call for action to improve theory application and reporting in behaviour change research. BMC Public Health. 2021;21:479. https://doi.org/10.1186/s12889-021-10541-1 .

Damschroder LJ, Reardon CM, Widerquist MAO, Lowery J. The updated Consolidated Framework for Implementation Research based on user feedback. Implement Sci. 2022;17:1–75. https://doi.org/10.1186/s13012-022-01245-0 .

Atkins L, Francis J, Islam R, et al. A guide to using the Theoretical Domains Framework of behaviour change to investigate implementation problems. Implement Sci. 2017;12:77. https://doi.org/10.1186/s13012-017-0605-9 .

John IPA, Sander G, Mark HA, et al. Increasing value and reducing waste in research design, conduct, and analysis. Lancet. 2014;383:166–75. https://doi.org/10.1016/S0140-6736(13)62227-8 .

Grant A, Altman D, Babiker A, Campbell M. A proposed charter for clinical trial data monitoring committees helping them to do their job well. Lancet. 2005;365:711–22. https://doi.org/10.1016/S0140-6736(05)17965-3 .

Grimshaw J, Shirran L, Thomas R, et al. Changing Provider Behavior An Overview of Systematic Reviews of Interventions. Med Care. 2001;39:II2–45.

Article   CAS   PubMed   Google Scholar  

Gillies K, Brehaut J, Coffey T, et al. How can behavioural science help us design better trials? Trails. 2021;22:882. https://doi.org/10.1186/s13063-021-05853-x .

Khan S, Tessier L. Implementation Blueprint for Community Based Pilots for Supporting Decision Making. 2021. Available from: https://irisinstitute.ca/wp-content/uploads/sites/2/2021/09/Supporting-DM-Implementation-Blueprint.pdf . ISBN: 978-1-897292-38-9. ISBN: 978-1-897292-38-9

Hall J, Morton S, Hall J, et al. A co-production approach guided by the behaviour change wheel to develop an intervention for reducing sedentary behaviour after stroke. Pilot Feasibility Stud. 2020;6:115. https://doi.org/10.1186/s40814-020-00667-1 .

Raza MZ, Bruhn H, Gillies K. Dissemination of trial results to participants in phase III pragmatic clinical trials: an audit of trial investigators intentions. BMJ Open. 2020;10:e035730. https://doi.org/10.1136/bmjopen-2019-035730 .

Avery KNL, Williamson PR, Gamble C, et al. Informing efficient randomised controlled trials exploration of challenges in developing progression criteria for internal pilot studies. BMJ Open. 2017;7:e013537. https://doi.org/10.1136/bmjopen-2016-013537 .

Download references

Acknowledgements

We would like to thank the members of the TMRP working groups that participated in the case study exercise. We would also like to thank all the participants within the survey and interviews.

This project was supported by the MRC – NIHR funded Trials Methodology Research Partnership (MR/S014357/1).

The Health Services Research Unit, Institute of Applied Health Sciences (University of Aberdeen), is core-funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. They were not involved in the design of the study or the collection, analysis, and interpretation of data.

Author information

Authors and affiliations.

Health Services Research Unit, University of Aberdeen, Health Services Research Unit, Foresterhill, Aberdeen, AB25 2ZD, UK

Taylor Coffey & Katie Gillies

Department of Health Data Science, MRC-NIHR Trials Methodology Research Partnership, University of Liverpool, Liverpool, England

Paula R. Williamson

You can also search for this author in PubMed   Google Scholar

Contributions

TC contributed to the conceptualisation of the study and was responsible for the design and conduct of the case study selection, surveys, and interviews. TC also analysed all data and was the primary author of the manuscript. KG contributed to the conceptualisation of the study, data quality and analysis checks, along with contributing to drafting of the manuscript, providing edits and final approval. PW contributed to the conceptualisation of the study, edits and final approval of the manuscript.

Corresponding author

Correspondence to Taylor Coffey .

Ethics declarations

Ethics approval and consent to participate.

This study was approved by the University of Aberdeen College Ethics Review Board (CERB) (Application No. SERB/2022/4/2340). Informed consent was obtained from all participants.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: appendix 1..

Survey with PIL. Word document version of the survey circulated to CTUs, which includes a PIL section.

Additional file 2: Appendix 2.

COM-B topic guide. Topic guide used during interviews.

Additional file 3:

Domain 1. Research team and reflexivity.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Coffey, T., Williamson, P.R., Gillies, K. et al. Understanding implementation of findings from trial method research: a mixed methods study applying implementation frameworks and behaviour change models. Trials 25 , 139 (2024). https://doi.org/10.1186/s13063-024-07968-3

Download citation

Received : 09 June 2023

Accepted : 05 February 2024

Published : 22 February 2024

DOI : https://doi.org/10.1186/s13063-024-07968-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Trial method research
  • Implementation science

ISSN: 1745-6215

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

example of list of tables in research paper

  • Systematic review
  • Open access
  • Published: 19 February 2024

‘It depends’: what 86 systematic reviews tell us about what strategies to use to support the use of research in clinical practice

  • Annette Boaz   ORCID: orcid.org/0000-0003-0557-1294 1 ,
  • Juan Baeza 2 ,
  • Alec Fraser   ORCID: orcid.org/0000-0003-1121-1551 2 &
  • Erik Persson 3  

Implementation Science volume  19 , Article number:  15 ( 2024 ) Cite this article

1999 Accesses

71 Altmetric

Metrics details

The gap between research findings and clinical practice is well documented and a range of strategies have been developed to support the implementation of research into clinical practice. The objective of this study was to update and extend two previous reviews of systematic reviews of strategies designed to implement research evidence into clinical practice.

We developed a comprehensive systematic literature search strategy based on the terms used in the previous reviews to identify studies that looked explicitly at interventions designed to turn research evidence into practice. The search was performed in June 2022 in four electronic databases: Medline, Embase, Cochrane and Epistemonikos. We searched from January 2010 up to June 2022 and applied no language restrictions. Two independent reviewers appraised the quality of included studies using a quality assessment checklist. To reduce the risk of bias, papers were excluded following discussion between all members of the team. Data were synthesised using descriptive and narrative techniques to identify themes and patterns linked to intervention strategies, targeted behaviours, study settings and study outcomes.

We identified 32 reviews conducted between 2010 and 2022. The reviews are mainly of multi-faceted interventions ( n  = 20) although there are reviews focusing on single strategies (ICT, educational, reminders, local opinion leaders, audit and feedback, social media and toolkits). The majority of reviews report strategies achieving small impacts (normally on processes of care). There is much less evidence that these strategies have shifted patient outcomes. Furthermore, a lot of nuance lies behind these headline findings, and this is increasingly commented upon in the reviews themselves.

Combined with the two previous reviews, 86 systematic reviews of strategies to increase the implementation of research into clinical practice have been identified. We need to shift the emphasis away from isolating individual and multi-faceted interventions to better understanding and building more situated, relational and organisational capability to support the use of research in clinical practice. This will involve drawing on a wider range of research perspectives (including social science) in primary studies and diversifying the types of synthesis undertaken to include approaches such as realist synthesis which facilitate exploration of the context in which strategies are employed.

Peer Review reports

Contribution to the literature

Considerable time and money is invested in implementing and evaluating strategies to increase the implementation of research into clinical practice.

The growing body of evidence is not providing the anticipated clear lessons to support improved implementation.

Instead what is needed is better understanding and building more situated, relational and organisational capability to support the use of research in clinical practice.

This would involve a more central role in implementation science for a wider range of perspectives, especially from the social, economic, political and behavioural sciences and for greater use of different types of synthesis, such as realist synthesis.

Introduction

The gap between research findings and clinical practice is well documented and a range of interventions has been developed to increase the implementation of research into clinical practice [ 1 , 2 ]. In recent years researchers have worked to improve the consistency in the ways in which these interventions (often called strategies) are described to support their evaluation. One notable development has been the emergence of Implementation Science as a field focusing explicitly on “the scientific study of methods to promote the systematic uptake of research findings and other evidence-based practices into routine practice” ([ 3 ] p. 1). The work of implementation science focuses on closing, or at least narrowing, the gap between research and practice. One contribution has been to map existing interventions, identifying 73 discreet strategies to support research implementation [ 4 ] which have been grouped into 9 clusters [ 5 ]. The authors note that they have not considered the evidence of effectiveness of the individual strategies and that a next step is to understand better which strategies perform best in which combinations and for what purposes [ 4 ]. Other authors have noted that there is also scope to learn more from other related fields of study such as policy implementation [ 6 ] and to draw on methods designed to support the evaluation of complex interventions [ 7 ].

The increase in activity designed to support the implementation of research into practice and improvements in reporting provided the impetus for an update of a review of systematic reviews of the effectiveness of interventions designed to support the use of research in clinical practice [ 8 ] which was itself an update of the review conducted by Grimshaw and colleagues in 2001. The 2001 review [ 9 ] identified 41 reviews considering a range of strategies including educational interventions, audit and feedback, computerised decision support to financial incentives and combined interventions. The authors concluded that all the interventions had the potential to promote the uptake of evidence in practice, although no one intervention seemed to be more effective than the others in all settings. They concluded that combined interventions were more likely to be effective than single interventions. The 2011 review identified a further 13 systematic reviews containing 313 discrete primary studies. Consistent with the previous review, four main strategy types were identified: audit and feedback; computerised decision support; opinion leaders; and multi-faceted interventions (MFIs). Nine of the reviews reported on MFIs. The review highlighted the small effects of single interventions such as audit and feedback, computerised decision support and opinion leaders. MFIs claimed an improvement in effectiveness over single interventions, although effect sizes remained small to moderate and this improvement in effectiveness relating to MFIs has been questioned in a subsequent review [ 10 ]. In updating the review, we anticipated a larger pool of reviews and an opportunity to consolidate learning from more recent systematic reviews of interventions.

This review updates and extends our previous review of systematic reviews of interventions designed to implement research evidence into clinical practice. To identify potentially relevant peer-reviewed research papers, we developed a comprehensive systematic literature search strategy based on the terms used in the Grimshaw et al. [ 9 ] and Boaz, Baeza and Fraser [ 8 ] overview articles. To ensure optimal retrieval, our search strategy was refined with support from an expert university librarian, considering the ongoing improvements in the development of search filters for systematic reviews since our first review [ 11 ]. We also wanted to include technology-related terms (e.g. apps, algorithms, machine learning, artificial intelligence) to find studies that explored interventions based on the use of technological innovations as mechanistic tools for increasing the use of evidence into practice (see Additional file 1 : Appendix A for full search strategy).

The search was performed in June 2022 in the following electronic databases: Medline, Embase, Cochrane and Epistemonikos. We searched for articles published since the 2011 review. We searched from January 2010 up to June 2022 and applied no language restrictions. Reference lists of relevant papers were also examined.

We uploaded the results using EPPI-Reviewer, a web-based tool that facilitated semi-automation of the screening process and removal of duplicate studies. We made particular use of a priority screening function to reduce screening workload and avoid ‘data deluge’ [ 12 ]. Through machine learning, one reviewer screened a smaller number of records ( n  = 1200) to train the software to predict whether a given record was more likely to be relevant or irrelevant, thus pulling the relevant studies towards the beginning of the screening process. This automation did not replace manual work but helped the reviewer to identify eligible studies more quickly. During the selection process, we included studies that looked explicitly at interventions designed to turn research evidence into practice. Studies were included if they met the following pre-determined inclusion criteria:

The study was a systematic review

Search terms were included

Focused on the implementation of research evidence into practice

The methodological quality of the included studies was assessed as part of the review

Study populations included healthcare providers and patients. The EPOC taxonomy [ 13 ] was used to categorise the strategies. The EPOC taxonomy has four domains: delivery arrangements, financial arrangements, governance arrangements and implementation strategies. The implementation strategies domain includes 20 strategies targeted at healthcare workers. Numerous EPOC strategies were assessed in the review including educational strategies, local opinion leaders, reminders, ICT-focused approaches and audit and feedback. Some strategies that did not fit easily within the EPOC categories were also included. These were social media strategies and toolkits, and multi-faceted interventions (MFIs) (see Table  2 ). Some systematic reviews included comparisons of different interventions while other reviews compared one type of intervention against a control group. Outcomes related to improvements in health care processes or patient well-being. Numerous individual study types (RCT, CCT, BA, ITS) were included within the systematic reviews.

We excluded papers that:

Focused on changing patient rather than provider behaviour

Had no demonstrable outcomes

Made unclear or no reference to research evidence

The last of these criteria was sometimes difficult to judge, and there was considerable discussion amongst the research team as to whether the link between research evidence and practice was sufficiently explicit in the interventions analysed. As we discussed in the previous review [ 8 ] in the field of healthcare, the principle of evidence-based practice is widely acknowledged and tools to change behaviour such as guidelines are often seen to be an implicit codification of evidence, despite the fact that this is not always the case.

Reviewers employed a two-stage process to select papers for inclusion. First, all titles and abstracts were screened by one reviewer to determine whether the study met the inclusion criteria. Two papers [ 14 , 15 ] were identified that fell just before the 2010 cut-off. As they were not identified in the searches for the first review [ 8 ] they were included and progressed to assessment. Each paper was rated as include, exclude or maybe. The full texts of 111 relevant papers were assessed independently by at least two authors. To reduce the risk of bias, papers were excluded following discussion between all members of the team. 32 papers met the inclusion criteria and proceeded to data extraction. The study selection procedure is documented in a PRISMA literature flow diagram (see Fig.  1 ). We were able to include French, Spanish and Portuguese papers in the selection reflecting the language skills in the study team, but none of the papers identified met the inclusion criteria. Other non- English language papers were excluded.

figure 1

PRISMA flow diagram. Source: authors

One reviewer extracted data on strategy type, number of included studies, local, target population, effectiveness and scope of impact from the included studies. Two reviewers then independently read each paper and noted key findings and broad themes of interest which were then discussed amongst the wider authorial team. Two independent reviewers appraised the quality of included studies using a Quality Assessment Checklist based on Oxman and Guyatt [ 16 ] and Francke et al. [ 17 ]. Each study was rated a quality score ranging from 1 (extensive flaws) to 7 (minimal flaws) (see Additional file 2 : Appendix B). All disagreements were resolved through discussion. Studies were not excluded in this updated overview based on methodological quality as we aimed to reflect the full extent of current research into this topic.

The extracted data were synthesised using descriptive and narrative techniques to identify themes and patterns in the data linked to intervention strategies, targeted behaviours, study settings and study outcomes.

Thirty-two studies were included in the systematic review. Table 1. provides a detailed overview of the included systematic reviews comprising reference, strategy type, quality score, number of included studies, local, target population, effectiveness and scope of impact (see Table  1. at the end of the manuscript). Overall, the quality of the studies was high. Twenty-three studies scored 7, six studies scored 6, one study scored 5, one study scored 4 and one study scored 3. The primary focus of the review was on reviews of effectiveness studies, but a small number of reviews did include data from a wider range of methods including qualitative studies which added to the analysis in the papers [ 18 , 19 , 20 , 21 ]. The majority of reviews report strategies achieving small impacts (normally on processes of care). There is much less evidence that these strategies have shifted patient outcomes. In this section, we discuss the different EPOC-defined implementation strategies in turn. Interestingly, we found only two ‘new’ approaches in this review that did not fit into the existing EPOC approaches. These are a review focused on the use of social media and a review considering toolkits. In addition to single interventions, we also discuss multi-faceted interventions. These were the most common intervention approach overall. A summary is provided in Table  2 .

Educational strategies

The overview identified three systematic reviews focusing on educational strategies. Grudniewicz et al. [ 22 ] explored the effectiveness of printed educational materials on primary care physician knowledge, behaviour and patient outcomes and concluded they were not effective in any of these aspects. Koota, Kääriäinen and Melender [ 23 ] focused on educational interventions promoting evidence-based practice among emergency room/accident and emergency nurses and found that interventions involving face-to-face contact led to significant or highly significant effects on patient benefits and emergency nurses’ knowledge, skills and behaviour. Interventions using written self-directed learning materials also led to significant improvements in nurses’ knowledge of evidence-based practice. Although the quality of the studies was high, the review primarily included small studies with low response rates, and many of them relied on self-assessed outcomes; consequently, the strength of the evidence for these outcomes is modest. Wu et al. [ 20 ] questioned if educational interventions aimed at nurses to support the implementation of evidence-based practice improve patient outcomes. Although based on evaluation projects and qualitative data, their results also suggest that positive changes on patient outcomes can be made following the implementation of specific evidence-based approaches (or projects). The differing positive outcomes for educational strategies aimed at nurses might indicate that the target audience is important.

Local opinion leaders

Flodgren et al. [ 24 ] was the only systemic review focusing solely on opinion leaders. The review found that local opinion leaders alone, or in combination with other interventions, can be effective in promoting evidence‐based practice, but this varies both within and between studies and the effect on patient outcomes is uncertain. The review found that, overall, any intervention involving opinion leaders probably improves healthcare professionals’ compliance with evidence-based practice but varies within and across studies. However, how opinion leaders had an impact could not be determined because of insufficient details were provided, illustrating that reporting specific details in published studies is important if diffusion of effective methods of increasing evidence-based practice is to be spread across a system. The usefulness of this review is questionable because it cannot provide evidence of what is an effective opinion leader, whether teams of opinion leaders or a single opinion leader are most effective, or the most effective methods used by opinion leaders.

Pantoja et al. [ 26 ] was the only systemic review focusing solely on manually generated reminders delivered on paper included in the overview. The review explored how these affected professional practice and patient outcomes. The review concluded that manually generated reminders delivered on paper as a single intervention probably led to small to moderate increases in adherence to clinical recommendations, and they could be used as a single quality improvement intervention. However, the authors indicated that this intervention would make little or no difference to patient outcomes. The authors state that such a low-tech intervention may be useful in low- and middle-income countries where paper records are more likely to be the norm.

ICT-focused approaches

The three ICT-focused reviews [ 14 , 27 , 28 ] showed mixed results. Jamal, McKenzie and Clark [ 14 ] explored the impact of health information technology on the quality of medical and health care. They examined the impact of electronic health record, computerised provider order-entry, or decision support system. This showed a positive improvement in adherence to evidence-based guidelines but not to patient outcomes. The number of studies included in the review was low and so a conclusive recommendation could not be reached based on this review. Similarly, Brown et al. [ 28 ] found that technology-enabled knowledge translation interventions may improve knowledge of health professionals, but all eight studies raised concerns of bias. The De Angelis et al. [ 27 ] review was more promising, reporting that ICT can be a good way of disseminating clinical practice guidelines but conclude that it is unclear which type of ICT method is the most effective.

Audit and feedback

Sykes, McAnuff and Kolehmainen [ 29 ] examined whether audit and feedback were effective in dementia care and concluded that it remains unclear which ingredients of audit and feedback are successful as the reviewed papers illustrated large variations in the effectiveness of interventions using audit and feedback.

Non-EPOC listed strategies: social media, toolkits

There were two new (non-EPOC listed) intervention types identified in this review compared to the 2011 review — fewer than anticipated. We categorised a third — ‘care bundles’ [ 36 ] as a multi-faceted intervention due to its description in practice and a fourth — ‘Technology Enhanced Knowledge Transfer’ [ 28 ] was classified as an ICT-focused approach. The first new strategy was identified in Bhatt et al.’s [ 30 ] systematic review of the use of social media for the dissemination of clinical practice guidelines. They reported that the use of social media resulted in a significant improvement in knowledge and compliance with evidence-based guidelines compared with more traditional methods. They noted that a wide selection of different healthcare professionals and patients engaged with this type of social media and its global reach may be significant for low- and middle-income countries. This review was also noteworthy for developing a simple stepwise method for using social media for the dissemination of clinical practice guidelines. However, it is debatable whether social media can be classified as an intervention or just a different way of delivering an intervention. For example, the review discussed involving opinion leaders and patient advocates through social media. However, this was a small review that included only five studies, so further research in this new area is needed. Yamada et al. [ 31 ] draw on 39 studies to explore the application of toolkits, 18 of which had toolkits embedded within larger KT interventions, and 21 of which evaluated toolkits as standalone interventions. The individual component strategies of the toolkits were highly variable though the authors suggest that they align most closely with educational strategies. The authors conclude that toolkits as either standalone strategies or as part of MFIs hold some promise for facilitating evidence use in practice but caution that the quality of many of the primary studies included is considered weak limiting these findings.

Multi-faceted interventions

The majority of the systematic reviews ( n  = 20) reported on more than one intervention type. Some of these systematic reviews focus exclusively on multi-faceted interventions, whilst others compare different single or combined interventions aimed at achieving similar outcomes in particular settings. While these two approaches are often described in a similar way, they are actually quite distinct from each other as the former report how multiple strategies may be strategically combined in pursuance of an agreed goal, whilst the latter report how different strategies may be incidentally used in sometimes contrasting settings in the pursuance of similar goals. Ariyo et al. [ 35 ] helpfully summarise five key elements often found in effective MFI strategies in LMICs — but which may also be transferrable to HICs. First, effective MFIs encourage a multi-disciplinary approach acknowledging the roles played by different professional groups to collectively incorporate evidence-informed practice. Second, they utilise leadership drawing on a wide set of clinical and non-clinical actors including managers and even government officials. Third, multiple types of educational practices are utilised — including input from patients as stakeholders in some cases. Fourth, protocols, checklists and bundles are used — most effectively when local ownership is encouraged. Finally, most MFIs included an emphasis on monitoring and evaluation [ 35 ]. In contrast, other studies offer little information about the nature of the different MFI components of included studies which makes it difficult to extrapolate much learning from them in relation to why or how MFIs might affect practice (e.g. [ 28 , 38 ]). Ultimately, context matters, which some review authors argue makes it difficult to say with real certainty whether single or MFI strategies are superior (e.g. [ 21 , 27 ]). Taking all the systematic reviews together we may conclude that MFIs appear to be more likely to generate positive results than single interventions (e.g. [ 34 , 45 ]) though other reviews should make us cautious (e.g. [ 32 , 43 ]).

While multi-faceted interventions still seem to be more effective than single-strategy interventions, there were important distinctions between how the results of reviews of MFIs are interpreted in this review as compared to the previous reviews [ 8 , 9 ], reflecting greater nuance and debate in the literature. This was particularly noticeable where the effectiveness of MFIs was compared to single strategies, reflecting developments widely discussed in previous studies [ 10 ]. We found that most systematic reviews are bounded by their clinical, professional, spatial, system, or setting criteria and often seek to draw out implications for the implementation of evidence in their areas of specific interest (such as nursing or acute care). Frequently this means combining all relevant studies to explore the respective foci of each systematic review. Therefore, most reviews we categorised as MFIs actually include highly variable numbers and combinations of intervention strategies and highly heterogeneous original study designs. This makes statistical analyses of the type used by Squires et al. [ 10 ] on the three reviews in their paper not possible. Further, it also makes extrapolating findings and commenting on broad themes complex and difficult. This may suggest that future research should shift its focus from merely examining ‘what works’ to ‘what works where and what works for whom’ — perhaps pointing to the value of realist approaches to these complex review topics [ 48 , 49 ] and other more theory-informed approaches [ 50 ].

Some reviews have a relatively small number of studies (i.e. fewer than 10) and the authors are often understandably reluctant to engage with wider debates about the implications of their findings. Other larger studies do engage in deeper discussions about internal comparisons of findings across included studies and also contextualise these in wider debates. Some of the most informative studies (e.g. [ 35 , 40 ]) move beyond EPOC categories and contextualise MFIs within wider systems thinking and implementation theory. This distinction between MFIs and single interventions can actually be very useful as it offers lessons about the contexts in which individual interventions might have bounded effectiveness (i.e. educational interventions for individual change). Taken as a whole, this may also then help in terms of how and when to conjoin single interventions into effective MFIs.

In the two previous reviews, a consistent finding was that MFIs were more effective than single interventions [ 8 , 9 ]. However, like Squires et al. [ 10 ] this overview is more equivocal on this important issue. There are four points which may help account for the differences in findings in this regard. Firstly, the diversity of the systematic reviews in terms of clinical topic or setting is an important factor. Secondly, there is heterogeneity of the studies within the included systematic reviews themselves. Thirdly, there is a lack of consistency with regards to the definition and strategies included within of MFIs. Finally, there are epistemological differences across the papers and the reviews. This means that the results that are presented depend on the methods used to measure, report, and synthesise them. For instance, some reviews highlight that education strategies can be useful to improve provider understanding — but without wider organisational or system-level change, they may struggle to deliver sustained transformation [ 19 , 44 ].

It is also worth highlighting the importance of the theory of change underlying the different interventions. Where authors of the systematic reviews draw on theory, there is space to discuss/explain findings. We note a distinction between theoretical and atheoretical systematic review discussion sections. Atheoretical reviews tend to present acontextual findings (for instance, one study found very positive results for one intervention, and this gets highlighted in the abstract) whilst theoretically informed reviews attempt to contextualise and explain patterns within the included studies. Theory-informed systematic reviews seem more likely to offer more profound and useful insights (see [ 19 , 35 , 40 , 43 , 45 ]). We find that the most insightful systematic reviews of MFIs engage in theoretical generalisation — they attempt to go beyond the data of individual studies and discuss the wider implications of the findings of the studies within their reviews drawing on implementation theory. At the same time, they highlight the active role of context and the wider relational and system-wide issues linked to implementation. It is these types of investigations that can help providers further develop evidence-based practice.

This overview has identified a small, but insightful set of papers that interrogate and help theorise why, how, for whom, and in which circumstances it might be the case that MFIs are superior (see [ 19 , 35 , 40 ] once more). At the level of this overview — and in most of the systematic reviews included — it appears to be the case that MFIs struggle with the question of attribution. In addition, there are other important elements that are often unmeasured, or unreported (e.g. costs of the intervention — see [ 40 ]). Finally, the stronger systematic reviews [ 19 , 35 , 40 , 43 , 45 ] engage with systems issues, human agency and context [ 18 ] in a way that was not evident in the systematic reviews identified in the previous reviews [ 8 , 9 ]. The earlier reviews lacked any theory of change that might explain why MFIs might be more effective than single ones — whereas now some systematic reviews do this, which enables them to conclude that sometimes single interventions can still be more effective.

As Nilsen et al. ([ 6 ] p. 7) note ‘Study findings concerning the effectiveness of various approaches are continuously synthesized and assembled in systematic reviews’. We may have gone as far as we can in understanding the implementation of evidence through systematic reviews of single and multi-faceted interventions and the next step would be to conduct more research exploring the complex and situated nature of evidence used in clinical practice and by particular professional groups. This would further build on the nuanced discussion and conclusion sections in a subset of the papers we reviewed. This might also support the field to move away from isolating individual implementation strategies [ 6 ] to explore the complex processes involving a range of actors with differing capacities [ 51 ] working in diverse organisational cultures. Taxonomies of implementation strategies do not fully account for the complex process of implementation, which involves a range of different actors with different capacities and skills across multiple system levels. There is plenty of work to build on, particularly in the social sciences, which currently sits at the margins of debates about evidence implementation (see for example, Normalisation Process Theory [ 52 ]).

There are several changes that we have identified in this overview of systematic reviews in comparison to the review we published in 2011 [ 8 ]. A consistent and welcome finding is that the overall quality of the systematic reviews themselves appears to have improved between the two reviews, although this is not reflected upon in the papers. This is exhibited through better, clearer reporting mechanisms in relation to the mechanics of the reviews, alongside a greater attention to, and deeper description of, how potential biases in included papers are discussed. Additionally, there is an increased, but still limited, inclusion of original studies conducted in low- and middle-income countries as opposed to just high-income countries. Importantly, we found that many of these systematic reviews are attuned to, and comment upon the contextual distinctions of pursuing evidence-informed interventions in health care settings in different economic settings. Furthermore, systematic reviews included in this updated article cover a wider set of clinical specialities (both within and beyond hospital settings) and have a focus on a wider set of healthcare professions — discussing both similarities, differences and inter-professional challenges faced therein, compared to the earlier reviews. These wider ranges of studies highlight that a particular intervention or group of interventions may work well for one professional group but be ineffective for another. This diversity of study settings allows us to consider the important role context (in its many forms) plays on implementing evidence into practice. Examining the complex and varied context of health care will help us address what Nilsen et al. ([ 6 ] p. 1) described as, ‘society’s health problems [that] require research-based knowledge acted on by healthcare practitioners together with implementation of political measures from governmental agencies’. This will help us shift implementation science to move, ‘beyond a success or failure perspective towards improved analysis of variables that could explain the impact of the implementation process’ ([ 6 ] p. 2).

This review brings together 32 papers considering individual and multi-faceted interventions designed to support the use of evidence in clinical practice. The majority of reviews report strategies achieving small impacts (normally on processes of care). There is much less evidence that these strategies have shifted patient outcomes. Combined with the two previous reviews, 86 systematic reviews of strategies to increase the implementation of research into clinical practice have been conducted. As a whole, this substantial body of knowledge struggles to tell us more about the use of individual and MFIs than: ‘it depends’. To really move forwards in addressing the gap between research evidence and practice, we may need to shift the emphasis away from isolating individual and multi-faceted interventions to better understanding and building more situated, relational and organisational capability to support the use of research in clinical practice. This will involve drawing on a wider range of perspectives, especially from the social, economic, political and behavioural sciences in primary studies and diversifying the types of synthesis undertaken to include approaches such as realist synthesis which facilitate exploration of the context in which strategies are employed. Harvey et al. [ 53 ] suggest that when context is likely to be critical to implementation success there are a range of primary research approaches (participatory research, realist evaluation, developmental evaluation, ethnography, quality/ rapid cycle improvement) that are likely to be appropriate and insightful. While these approaches often form part of implementation studies in the form of process evaluations, they are usually relatively small scale in relation to implementation research as a whole. As a result, the findings often do not make it into the subsequent systematic reviews. This review provides further evidence that we need to bring qualitative approaches in from the periphery to play a central role in many implementation studies and subsequent evidence syntheses. It would be helpful for systematic reviews, at the very least, to include more detail about the interventions and their implementation in terms of how and why they worked.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Before and after study

Controlled clinical trial

Effective Practice and Organisation of Care

High-income countries

Information and Communications Technology

Interrupted time series

Knowledge translation

Low- and middle-income countries

Randomised controlled trial

Grol R, Grimshaw J. From best evidence to best practice: effective implementation of change in patients’ care. Lancet. 2003;362:1225–30. https://doi.org/10.1016/S0140-6736(03)14546-1 .

Article   PubMed   Google Scholar  

Green LA, Seifert CM. Translation of research into practice: why we can’t “just do it.” J Am Board Fam Pract. 2005;18:541–5. https://doi.org/10.3122/jabfm.18.6.541 .

Eccles MP, Mittman BS. Welcome to Implementation Science. Implement Sci. 2006;1:1–3. https://doi.org/10.1186/1748-5908-1-1 .

Article   PubMed Central   Google Scholar  

Powell BJ, Waltz TJ, Chinman MJ, Damschroder LJ, Smith JL, Matthieu MM, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10:2–14. https://doi.org/10.1186/s13012-015-0209-1 .

Article   Google Scholar  

Waltz TJ, Powell BJ, Matthieu MM, Damschroder LJ, et al. Use of concept mapping to characterize relationships among implementation strategies and assess their feasibility and importance: results from the Expert Recommendations for Implementing Change (ERIC) study. Implement Sci. 2015;10:1–8. https://doi.org/10.1186/s13012-015-0295-0 .

Nilsen P, Ståhl C, Roback K, et al. Never the twain shall meet? - a comparison of implementation science and policy implementation research. Implementation Sci. 2013;8:2–12. https://doi.org/10.1186/1748-5908-8-63 .

Rycroft-Malone J, Seers K, Eldh AC, et al. A realist process evaluation within the Facilitating Implementation of Research Evidence (FIRE) cluster randomised controlled international trial: an exemplar. Implementation Sci. 2018;13:1–15. https://doi.org/10.1186/s13012-018-0811-0 .

Boaz A, Baeza J, Fraser A, European Implementation Score Collaborative Group (EIS). Effective implementation of research into practice: an overview of systematic reviews of the health literature. BMC Res Notes. 2011;4:212. https://doi.org/10.1186/1756-0500-4-212 .

Article   PubMed   PubMed Central   Google Scholar  

Grimshaw JM, Shirran L, Thomas R, Mowatt G, Fraser C, Bero L, et al. Changing provider behavior – an overview of systematic reviews of interventions. Med Care. 2001;39 8Suppl 2:II2–45.

Google Scholar  

Squires JE, Sullivan K, Eccles MP, et al. Are multifaceted interventions more effective than single-component interventions in changing health-care professionals’ behaviours? An overview of systematic reviews. Implement Sci. 2014;9:1–22. https://doi.org/10.1186/s13012-014-0152-6 .

Salvador-Oliván JA, Marco-Cuenca G, Arquero-Avilés R. Development of an efficient search filter to retrieve systematic reviews from PubMed. J Med Libr Assoc. 2021;109:561–74. https://doi.org/10.5195/jmla.2021.1223 .

Thomas JM. Diffusion of innovation in systematic review methodology: why is study selection not yet assisted by automation? OA Evid Based Med. 2013;1:1–6.

Effective Practice and Organisation of Care (EPOC). The EPOC taxonomy of health systems interventions. EPOC Resources for review authors. Oslo: Norwegian Knowledge Centre for the Health Services; 2016. epoc.cochrane.org/epoc-taxonomy . Accessed 9 Oct 2023.

Jamal A, McKenzie K, Clark M. The impact of health information technology on the quality of medical and health care: a systematic review. Health Inf Manag. 2009;38:26–37. https://doi.org/10.1177/183335830903800305 .

Menon A, Korner-Bitensky N, Kastner M, et al. Strategies for rehabilitation professionals to move evidence-based knowledge into practice: a systematic review. J Rehabil Med. 2009;41:1024–32. https://doi.org/10.2340/16501977-0451 .

Oxman AD, Guyatt GH. Validation of an index of the quality of review articles. J Clin Epidemiol. 1991;44:1271–8. https://doi.org/10.1016/0895-4356(91)90160-b .

Article   CAS   PubMed   Google Scholar  

Francke AL, Smit MC, de Veer AJ, et al. Factors influencing the implementation of clinical guidelines for health care professionals: a systematic meta-review. BMC Med Inform Decis Mak. 2008;8:1–11. https://doi.org/10.1186/1472-6947-8-38 .

Jones CA, Roop SC, Pohar SL, et al. Translating knowledge in rehabilitation: systematic review. Phys Ther. 2015;95:663–77. https://doi.org/10.2522/ptj.20130512 .

Scott D, Albrecht L, O’Leary K, Ball GDC, et al. Systematic review of knowledge translation strategies in the allied health professions. Implement Sci. 2012;7:1–17. https://doi.org/10.1186/1748-5908-7-70 .

Wu Y, Brettle A, Zhou C, Ou J, et al. Do educational interventions aimed at nurses to support the implementation of evidence-based practice improve patient outcomes? A systematic review. Nurse Educ Today. 2018;70:109–14. https://doi.org/10.1016/j.nedt.2018.08.026 .

Yost J, Ganann R, Thompson D, Aloweni F, et al. The effectiveness of knowledge translation interventions for promoting evidence-informed decision-making among nurses in tertiary care: a systematic review and meta-analysis. Implement Sci. 2015;10:1–15. https://doi.org/10.1186/s13012-015-0286-1 .

Grudniewicz A, Kealy R, Rodseth RN, Hamid J, et al. What is the effectiveness of printed educational materials on primary care physician knowledge, behaviour, and patient outcomes: a systematic review and meta-analyses. Implement Sci. 2015;10:2–12. https://doi.org/10.1186/s13012-015-0347-5 .

Koota E, Kääriäinen M, Melender HL. Educational interventions promoting evidence-based practice among emergency nurses: a systematic review. Int Emerg Nurs. 2018;41:51–8. https://doi.org/10.1016/j.ienj.2018.06.004 .

Flodgren G, O’Brien MA, Parmelli E, et al. Local opinion leaders: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev. 2019. https://doi.org/10.1002/14651858.CD000125.pub5 .

Arditi C, Rège-Walther M, Durieux P, et al. Computer-generated reminders delivered on paper to healthcare professionals: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD001175.pub4 .

Pantoja T, Grimshaw JM, Colomer N, et al. Manually-generated reminders delivered on paper: effects on professional practice and patient outcomes. Cochrane Database Syst Rev. 2019. https://doi.org/10.1002/14651858.CD001174.pub4 .

De Angelis G, Davies B, King J, McEwan J, et al. Information and communication technologies for the dissemination of clinical practice guidelines to health professionals: a systematic review. JMIR Med Educ. 2016;2:e16. https://doi.org/10.2196/mededu.6288 .

Brown A, Barnes C, Byaruhanga J, McLaughlin M, et al. Effectiveness of technology-enabled knowledge translation strategies in improving the use of research in public health: systematic review. J Med Internet Res. 2020;22:e17274. https://doi.org/10.2196/17274 .

Sykes MJ, McAnuff J, Kolehmainen N. When is audit and feedback effective in dementia care? A systematic review. Int J Nurs Stud. 2018;79:27–35. https://doi.org/10.1016/j.ijnurstu.2017.10.013 .

Bhatt NR, Czarniecki SW, Borgmann H, et al. A systematic review of the use of social media for dissemination of clinical practice guidelines. Eur Urol Focus. 2021;7:1195–204. https://doi.org/10.1016/j.euf.2020.10.008 .

Yamada J, Shorkey A, Barwick M, Widger K, et al. The effectiveness of toolkits as knowledge translation strategies for integrating evidence into clinical care: a systematic review. BMJ Open. 2015;5:e006808. https://doi.org/10.1136/bmjopen-2014-006808 .

Afari-Asiedu S, Abdulai MA, Tostmann A, et al. Interventions to improve dispensing of antibiotics at the community level in low and middle income countries: a systematic review. J Glob Antimicrob Resist. 2022;29:259–74. https://doi.org/10.1016/j.jgar.2022.03.009 .

Boonacker CW, Hoes AW, Dikhoff MJ, Schilder AG, et al. Interventions in health care professionals to improve treatment in children with upper respiratory tract infections. Int J Pediatr Otorhinolaryngol. 2010;74:1113–21. https://doi.org/10.1016/j.ijporl.2010.07.008 .

Al Zoubi FM, Menon A, Mayo NE, et al. The effectiveness of interventions designed to increase the uptake of clinical practice guidelines and best practices among musculoskeletal professionals: a systematic review. BMC Health Serv Res. 2018;18:2–11. https://doi.org/10.1186/s12913-018-3253-0 .

Ariyo P, Zayed B, Riese V, Anton B, et al. Implementation strategies to reduce surgical site infections: a systematic review. Infect Control Hosp Epidemiol. 2019;3:287–300. https://doi.org/10.1017/ice.2018.355 .

Borgert MJ, Goossens A, Dongelmans DA. What are effective strategies for the implementation of care bundles on ICUs: a systematic review. Implement Sci. 2015;10:1–11. https://doi.org/10.1186/s13012-015-0306-1 .

Cahill LS, Carey LM, Lannin NA, et al. Implementation interventions to promote the uptake of evidence-based practices in stroke rehabilitation. Cochrane Database Syst Rev. 2020. https://doi.org/10.1002/14651858.CD012575.pub2 .

Pedersen ER, Rubenstein L, Kandrack R, Danz M, et al. Elusive search for effective provider interventions: a systematic review of provider interventions to increase adherence to evidence-based treatment for depression. Implement Sci. 2018;13:1–30. https://doi.org/10.1186/s13012-018-0788-8 .

Jenkins HJ, Hancock MJ, French SD, Maher CG, et al. Effectiveness of interventions designed to reduce the use of imaging for low-back pain: a systematic review. CMAJ. 2015;187:401–8. https://doi.org/10.1503/cmaj.141183 .

Bennett S, Laver K, MacAndrew M, Beattie E, et al. Implementation of evidence-based, non-pharmacological interventions addressing behavior and psychological symptoms of dementia: a systematic review focused on implementation strategies. Int Psychogeriatr. 2021;33:947–75. https://doi.org/10.1017/S1041610220001702 .

Noonan VK, Wolfe DL, Thorogood NP, et al. Knowledge translation and implementation in spinal cord injury: a systematic review. Spinal Cord. 2014;52:578–87. https://doi.org/10.1038/sc.2014.62 .

Albrecht L, Archibald M, Snelgrove-Clarke E, et al. Systematic review of knowledge translation strategies to promote research uptake in child health settings. J Pediatr Nurs. 2016;31:235–54. https://doi.org/10.1016/j.pedn.2015.12.002 .

Campbell A, Louie-Poon S, Slater L, et al. Knowledge translation strategies used by healthcare professionals in child health settings: an updated systematic review. J Pediatr Nurs. 2019;47:114–20. https://doi.org/10.1016/j.pedn.2019.04.026 .

Bird ML, Miller T, Connell LA, et al. Moving stroke rehabilitation evidence into practice: a systematic review of randomized controlled trials. Clin Rehabil. 2019;33:1586–95. https://doi.org/10.1177/0269215519847253 .

Goorts K, Dizon J, Milanese S. The effectiveness of implementation strategies for promoting evidence informed interventions in allied healthcare: a systematic review. BMC Health Serv Res. 2021;21:1–11. https://doi.org/10.1186/s12913-021-06190-0 .

Zadro JR, O’Keeffe M, Allison JL, Lembke KA, et al. Effectiveness of implementation strategies to improve adherence of physical therapist treatment choices to clinical practice guidelines for musculoskeletal conditions: systematic review. Phys Ther. 2020;100:1516–41. https://doi.org/10.1093/ptj/pzaa101 .

Van der Veer SN, Jager KJ, Nache AM, et al. Translating knowledge on best practice into improving quality of RRT care: a systematic review of implementation strategies. Kidney Int. 2011;80:1021–34. https://doi.org/10.1038/ki.2011.222 .

Pawson R, Greenhalgh T, Harvey G, et al. Realist review–a new method of systematic review designed for complex policy interventions. J Health Serv Res Policy. 2005;10Suppl 1:21–34. https://doi.org/10.1258/1355819054308530 .

Rycroft-Malone J, McCormack B, Hutchinson AM, et al. Realist synthesis: illustrating the method for implementation research. Implementation Sci. 2012;7:1–10. https://doi.org/10.1186/1748-5908-7-33 .

Johnson MJ, May CR. Promoting professional behaviour change in healthcare: what interventions work, and why? A theory-led overview of systematic reviews. BMJ Open. 2015;5:e008592. https://doi.org/10.1136/bmjopen-2015-008592 .

Metz A, Jensen T, Farley A, Boaz A, et al. Is implementation research out of step with implementation practice? Pathways to effective implementation support over the last decade. Implement Res Pract. 2022;3:1–11. https://doi.org/10.1177/26334895221105585 .

May CR, Finch TL, Cornford J, Exley C, et al. Integrating telecare for chronic disease management in the community: What needs to be done? BMC Health Serv Res. 2011;11:1–11. https://doi.org/10.1186/1472-6963-11-131 .

Harvey G, Rycroft-Malone J, Seers K, Wilson P, et al. Connecting the science and practice of implementation – applying the lens of context to inform study design in implementation research. Front Health Serv. 2023;3:1–15. https://doi.org/10.3389/frhs.2023.1162762 .

Download references

Acknowledgements

The authors would like to thank Professor Kathryn Oliver for her support in the planning the review, Professor Steve Hanney for reading and commenting on the final manuscript and the staff at LSHTM library for their support in planning and conducting the literature search.

This study was supported by LSHTM’s Research England QR strategic priorities funding allocation and the National Institute for Health and Care Research (NIHR) Applied Research Collaboration South London (NIHR ARC South London) at King’s College Hospital NHS Foundation Trust. Grant number NIHR200152. The views expressed are those of the author(s) and not necessarily those of the NIHR, the Department of Health and Social Care or Research England.

Author information

Authors and affiliations.

Health and Social Care Workforce Research Unit, The Policy Institute, King’s College London, Virginia Woolf Building, 22 Kingsway, London, WC2B 6LE, UK

Annette Boaz

King’s Business School, King’s College London, 30 Aldwych, London, WC2B 4BG, UK

Juan Baeza & Alec Fraser

Federal University of Santa Catarina (UFSC), Campus Universitário Reitor João Davi Ferreira Lima, Florianópolis, SC, 88.040-900, Brazil

Erik Persson

You can also search for this author in PubMed   Google Scholar

Contributions

AB led the conceptual development and structure of the manuscript. EP conducted the searches and data extraction. All authors contributed to screening and quality appraisal. EP and AF wrote the first draft of the methods section. AB, JB and AF performed result synthesis and contributed to the analyses. AB wrote the first draft of the manuscript and incorporated feedback and revisions from all other authors. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Annette Boaz .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: appendix a., additional file 2: appendix b., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Boaz, A., Baeza, J., Fraser, A. et al. ‘It depends’: what 86 systematic reviews tell us about what strategies to use to support the use of research in clinical practice. Implementation Sci 19 , 15 (2024). https://doi.org/10.1186/s13012-024-01337-z

Download citation

Received : 01 November 2023

Accepted : 05 January 2024

Published : 19 February 2024

DOI : https://doi.org/10.1186/s13012-024-01337-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Implementation
  • Interventions
  • Clinical practice
  • Research evidence
  • Multi-faceted

Implementation Science

ISSN: 1748-5908

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

example of list of tables in research paper

IMAGES

  1. Tables in Research Paper

    example of list of tables in research paper

  2. Inserting Tables

    example of list of tables in research paper

  3. Apa Format Research Paper Table Of Contents : What is “Referencing

    example of list of tables in research paper

  4. Apa Style List Of Tables And Figures

    example of list of tables in research paper

  5. How To Label Tables In A Research Paper

    example of list of tables in research paper

  6. APA Table Guidelines Made Simple

    example of list of tables in research paper

VIDEO

  1. Table of 11 to 20

  2. Thesis Series 3

  3. How to Add List of Table

  4. Research Methodology Example for the PhD

  5. Research Report writing, research report in research methodology, research report format, research

  6. How to choose a research topic?

COMMENTS

  1. Figure and Table Lists

    Dissertation Figure and Table Lists | Word Instructions, Template & Examples Published on October 13, 2015 by Sarah Vinz . Revised on July 18, 2023 by Tegan George. A list of figures and tables compiles all of the figures and tables that you used in your thesis or dissertation, along with their corresponding page numbers.

  2. Tables in Research Paper

    Definition: In Research Papers, Tables are a way of presenting data and information in a structured format. Tables can be used to summarize large amounts of data or to highlight important findings. They are often used in scientific or technical papers to display experimental results, statistical analyses, or other quantitative information.

  3. APA Format for Tables and Figures

    An example of a table formatted according to APA guidelines is shown below. The table above uses only four lines: Those at the top and bottom, and those separating the main data from the column heads and the totals. Create your tables using the tools built into your word processor. In Word, you can use the " Insert table " tool. Prevent plagiarism.

  4. List of Figures and Tables in a Dissertation

    For example, research on a topic from physical sciences or engineering could include many figures and tables. Ideally, quantitative research studies tend to contain more tables and/or figures than qualitative ones.

  5. List of Tables, List of Figures

    Learn how to format your List of Tables and/or List of Figures in your research paper using Microsoft Word templates. Download the templates for free and follow the instructions for arrangement and style.

  6. Figure & Table Lists

    Frequently asked questions How to create a list of figures and tables in Word The first step to creating your list of figures and tables is to ensure that each of your figures and tables has a caption. This way, Microsoft Word will be able to find each one and compile them in your list automatically. To do this, follow these steps:

  7. APA Tables and Figures

    Common types include graphs, charts, drawings, maps, plots, and photos. Just like tables, figures should supplement the text and should be both understandable on their own and referenced fully in the text. This section details elements of formatting writers must use when including a figure in an APA document, gives an example of a figure ...

  8. 10.5 List of figures and tables

    Strictly speaking, figures are illustrations, drawings, photographs, graphs, and charts. Tables are rows and columns of words and numbers; they are not considered figures. For longer reports that contain dozens of figures and tables each, create separate lists of figures and tables.

  9. Sample tables

    Sample results of several t tests table. Sample correlation table. Sample analysis of variance (ANOVA) table. Sample factor analysis table. Sample regression table. Sample qualitative table with variable descriptions. Sample mixed methods table. These sample tables are also available as a downloadable Word file (DOCX, 37KB).

  10. PDF Research Writing: Tables and Figures

    Here are some tips for using tables and figures in your writing, followed by an annotated example of each. There may be variations between disciplines or personal choices (e.g. in numbering styles), so please look at other theses in your area and check with your supervisor. Positioning tables and figures within your text

  11. How to Use Tables and Figures effectively in Research Papers

    So, the tables need to be well organized and self-explanatory. Avoidance of repetition: Tables and figures add clarity to the research. They complement the research text and draw attention to key points. They can be used to highlight the main points of the paper, but values should not be repeated as it defeats the very purpose of these elements.

  12. Tables

    In APA style, a table is a representation of information that uses rows and columns. Keep the following in mind when including a table in your paper: Place the table number above the table, in bold text and flush with the left margin. Place the title of the table (in title case and italics), double-spaced, under the table number, flush left.

  13. List Of Figures And Tables For Your Dissertation

    The list of figures and tables in a research paper, thesis, or dissertation provides a structured overview of graphic elements included in the paper. This list guides readers to find specific graphs, images, tables, or charts effortlessly.

  14. Effective Use of Tables and Figures in Research Papers

    Figures can take many forms, such as bar graphs, frequency histograms, scatterplots, drawings, maps, etc. When using figures in a research paper, always think of your reader. What is the easiest figure for your reader to understand? How can you present the data in the simplest and most effective way?

  15. Tips on effective use of tables and figures in research papers

    1. Ensure that display items are self-explanatory: Some readers (and certainly reviewers and journal editors) turn their attention to the tables and figures before they read the entire text, so these display items should be self-contained.6,8,9,12,16,20 2.

  16. How to clearly articulate results and construct tables and figures in a

    It will be appropriate to indicate other demographic numerical details in tables or figures. As an example elucidating the abovementioned topics a research paper written by the authors of this review article, and published in the Turkish Journal of Urology in the year 2007 (Türk Üroloji Dergisi 2007;33:18-23) is presented below:

  17. Research Paper Structure

    A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1 Many will also contain Figures and Tables and some will have an Appendix or Appendices. These sections are detailed as follows (for a more in ...

  18. How to Use Tables & Graphs in a Research Paper

    In a table, readers can look up exact values, compare those values between pairs or groups of related measurements (e.g., growth rates or outcomes of a medical procedure over several years), look at ranges and intervals, and select specific factors to search for patterns. Tables are not restrained to a specific type of data or measurement.

  19. Your Guide to Creating Effective Tables and Figures in Research Papers

    According to the Purdue Online Writing Lab (Purdue OWL), the American Psychological Association (APA) states that Data in a table that would require only two or fewer columns and rows should be presented in the text. More complex data is better presented in tabular format.

  20. How to Write the List of Figures for a Thesis or Dissertation

    Write your list of figures and list of tables immediately after your list of contents. Unless specifically asked by a journal, you should not include a separate list of figures in a manuscript for peer-review. Important Points to Remember

  21. APA Sample Paper

    Note: This page reflects the latest version of the APA Publication Manual (i.e., APA 7), which released in October 2019. The equivalent resource for the older APA 6 style can be found here. Media Files: APA Sample Student Paper , APA Sample Professional Paper This resource is enhanced by Acrobat PDF files. Download the free Acrobat Reader

  22. Table of Contents

    Here are some examples: Simple Table of Contents This is a basic table of contents that lists the major sections or chapters of a document along with their corresponding page numbers. Example: Table of Contents I. Introduction …………………………………………. 1 II. Literature Review ………………………………… 3 III. Methodology ……………………………………… 6 IV.

  23. Understanding implementation of findings from trial method research: a

    Overall study description. We designed a sequential exploratory mixed methods study with three linked components: 1. Case studies: which identified existing examples of trial method research projects with actionable outputs that were believed to influence trial design, conduct, analysis, or reporting practice."Actionable outputs" were defined broadly as any resource, generated from these ...

  24. 'It depends': what 86 systematic reviews tell us about what strategies

    The gap between research findings and clinical practice is well documented and a range of interventions has been developed to increase the implementation of research into clinical practice [1, 2].In recent years researchers have worked to improve the consistency in the ways in which these interventions (often called strategies) are described to support their evaluation.